1) Matsumoto T, Takayama K, Ishida K, et al. Intraoperative soft tissue balance/kinematics and clinical evaluation of modified kinematically versus mechanically aligned total knee arthroplasty. J Knee Surg 2020;33(8):777-84.
2) Watanabe M, Kuriyama S, Nakamura S, et al. Abnormal knee kinematics caused by mechanical alignment in symmetric bicruciate-retaining total knee arthroplasty are alleviated by kinematic alignment. Knee 2020;27(5):1385-95.
3) Ishikawa M, Kuriyama S, Ito H, et al. Kinematic alignment produces near-normal knee motion but increases contact stress after total knee arthroplasty:a case study on a single implant design. Knee 2015;22(3):206-12.
4) Keshmiri A, Maderbacher G, Baier C, et al. Kinematic alignment in total knee arthroplasty leads to a better restoration of patellar kinematics compared to mechanic alignment. Knee Surg Sports Traumatol Arthrosc 2019;27(5):1529-34.
5) Sekiguchi K, Nakamura S, Nakamura K, et al. Varus alignment after total knee arthroplasty results in greater axial rotation during deep knee bend activity. Clin Biomech (Bristol, Avon) 2020;77:105051. doi:10.1016/j.clinbiomech.2020.105051.
6) Watanabe M, Kuriyama S, Nakamura S, et al. Varus femoral and tibial coronal alignments result in different kinematics and kinetics after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2017;25(11):3459-66.
7) Kuriyama S, Ishikawa M, Nakamura S, et al. No condylar lift-off occurs because of excessive lateral soft tissue laxity in neutrally aligned total knee arthroplasty:a computer simulation study. Knee Surg Sports Traumatol Arthrosc 2016;24(8):2517-24.
8) Nishitani K, Kuriyama S, Nakamura S, et al., Excessive flexed position of the femoral component causes abnormal kinematics and joint contact/ligament forces in total knee arthroplasty. Sci Rep 2023;13(1):6356. doi:10.1038/s41598-023-33183-2.
9) Keshmiri A, Springorum HR, Baier C, et al. Changes in sagittal component alignment alters patellar kinematics in TKA:an in vitro study. Knee Surg Sports Traumatol Arthrosc 2016;24(3):823-9.
10) Okamoto S, Mizu-uchi H, Okazaki K, et al. Effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. J Arthroplasty 2015;30(8):1439-43.
11) Fujimoto E, Sasashige Y, Tomita T, et al. Significant effect of the posterior tibial slope on the weight-bearing, midflexion in vivo kinematics after cruciate-retaining total knee arthroplasty. J Arthroplasty 2014;29(12):2324-30.
12) Heyse TJ, El-Zayat BF, De Corte R, et al. Internal femoral component malrotation in TKA significantly alters tibiofemoral kinematics. Knee Surg Sports Traumatol Arthrosc 2018;26(6):1767-75.
13) Nakahara H, Okazaki K, Hamai S, et al. Rotational alignment of the tibial component affects the kinematic rotation of a weight-bearing knee after total knee arthroplasty. Knee 2015;22(3):201-5.
14) Harman MK, Banks SA, Kirschner S, et al. Prosthesis alignment affects axial rotation motion after total knee replacement:a prospective in vivo study combining computed tomography and fluoroscopic evaluations. BMC Musculoskelet Disord 2012;13:206. doi:10.1186/1471-2474-13-206.
15) Watanabe T, Muneta T, Sekiya I, et al. Intraoperative joint gaps and mediolateral balance affect postoperative knee kinematics in posterior-stabilized total knee arthroplasty. Knee 2015;22(6):527-34.
16) Watanabe T, Gamada K, Koga H, et al. Consistent femoral external rotation during weight-bearing knee flexion is associated with better patient-reported pain and mediolateral balance after total knee arthroplasty. Clin Biomech (Bristol, Avon) 2021;88:105438. doi:10.1016/j.clinbiomech.2021.105438.
17) Inui H, Taketomi S, Yamagami R, et al. The relationship between soft-tissue balance and intraoperative kinematics of guided motion total knee arthroplasty. J Knee Surg 2019;32(1):91-6.
18) Matsuzaki T, Matsumoto T, Kubo S, et al. Tibial internal rotation is affected by lateral laxity in cruciate-retaining total knee arthroplasty:an intraoperative kinematic study using a navigation system and offset-type tensor. Knee Surg Sports Traumatol Arthrosc 2014;22(3):615-20.
19) Takasago T, Hamada D, Wada K, et al. Insufficient lateral joint laxity after bicruciate-retaining total knee arthroplasty potentially influences kinematics during flexion:A biomechanical cadaveric study. Knee 2021;28:311-8.
20) Nakamura S, Ito H, Yoshitomi H, et al. Analysis of the flexion gap on in vivo knee kinematics using fluoroscopy. J Arthroplasty 2015;30(7):1237-42.
21) Fujimoto E, Sasashige Y, Tomita T, et al. Intra-operative gaps affect outcome and postoperative kinematics in vivo following cruciate-retaining total knee arthroplasty. Int Orthop 2016;40(1):41-9.
22) Kinoshita T, Hino K, Kutsuna T, et al. Rotational soft-tissue balance is highly correlated with rotational kinematics in total knee arthroplasty. J Knee Surg 2023;36(1):47-53.
23) Wada K, Hamada D, Takasago T, et al. Rotational and varus-valgus laxity affects kinematics of the normal knee:a cadaveric study. J Orthop Surg (Hong Kong) 2019;27(3):2309499019873726. doi:10.1177/2309499019873726.
24) Watanabe T, Ishizuki M, Muneta T, et al. Knee kinematics in anterior cruciate ligament-substituting arthroplasty with or without the posterior cruciate ligament. J Arthroplasty 2013;28(4):548-52.
25) Watanabe T, Ishizuki M, Muneta T, et al. Matched comparison of kinematics in knees with mild and severe varus deformity using fixed- and mobile-bearing total knee arthroplasty. Clin Biomech (Bristol, Avon) 2012;27(9):924-8.
26) Watanabe T, Abbasi AZ, Conditt MA, et al. In vivo kinematics of a robot-assisted uni- and multi-compartmental knee arthroplasty. J Orthop Sci 2014;19(4):552-7.