1) Miyakoshi N, Suda K, Kudo D, et al. A nationwide survey on the incidence and characteristics of traumatic spinal cord injury in Japan in 2018. Spinal Cord 2021;59(6):626-34.
2) Dezawa M. Muse cells provide the pluripotency of mesenchymal stem cells:direct contribution of muse cells to tissue regeneration. Cell Transplant 2016;25(5):849-61.
3) Yamada Y, Wakao S, Kushida Y, et al. S1P-S1PR2 axis mediates homing of muse cells into damaged heart for long-lasting tissue repair and functional recovery after acute myocardial infarction. Circ Res 2018;122(8):1069-83.
4) Nitobe Y, Nagaoki T, Kumagai G, et al. Neurotrophic factor secretion and neural differentiation potential of multilineage-differentiating stress-enduring (Muse) cells derived from mouse adipose tissue. Cell Transplant 2019;28(9-10):1132-9.
5) Nagaoki T, Kumagai G, Nitobe Y, et al. Comparison of the anti-inflammatory effects of mouse adipose- and bone-marrow-derived multilineage-differentiating stress-enduring cells in acute-phase spinal cord injury. J Neurotrauma 2023;40(23-24):2596-609.
6) Yamauchi T, Kuroda Y, Morita T, et al. Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One 2015;10(3):e0116009. doi:10.1371/journal.pone.0116009.
7) Ozuru R, Wakao S, Tsuji T, et al. Rescue from Stx2-Producing E. coli-Associated Encephalopathy by Intravenous Injection of Muse Cells in NOD-SCID Mice. Mol Ther 2020;28(1):100-18.
8) Yamashita T, Kushida Y, Wakao S, et al. Therapeutic benefit of Muse cells in a mouse model of amyotrophic lateral sclerosis. Sci Rep 2020;10(1):17102. doi:10.1038/s41598-020-74216-4.
9) Suzuki T, Sato Y, Kushida Y, et al. Intravenously delivered multilineage-differentiating stress enduring cells dampen excessive glutamate metabolism and microglial activation in experimental perinatal hypoxic ischemic encephalopathy. J Cereb Blood Flow Metab 2021;41(7):1707-20.
10) Abe T, Aburakawa D, Niizuma K, et al. Intravenously transplanted human multilineage-differentiating stress-enduring cells afford brain repair in a mouse lacunar stroke model. Stroke 2020;51(2):601-11.
11) Niizuma K, Osawa SI, Endo H, et al. Randomized placebo-controlled trial of CL2020, an allogenic muse cell-based product, in subacute ischemic stroke. J Cereb Blood Flow Metab 2023;43(12):2029-39.
12) Yamashita T, Nakano Y, Sasaki R, et al. Safety and clinical effects of a Muse cell-based product in patients with amyotrophic lateral sclerosis:results of a phase 2 clinical trial. Cell Transplant 2023;32:9636897231214370. doi:10.1177/09636897231214370.
13) Kajitani T, Endo T, Iwabuchi N, et al. Association of intravenous administration of human Muse cells with deficit amelioration in a rat model of spinal cord injury. J Neurosurg Spine 2021;34(4):648-55.
14) Takahashi Y, Kajitani T, Endo T, et al. Intravenous administration of human muse cells ameliorates deficits in a rat model of subacute spinal cord injury. Int J Mol Sci 2023;24(19):14603. doi:10.3390/ijms241914603.