文献詳細
文献概要
講座 運動学の定説を問う・2
腰部脊柱の過酷な機能はいかに守られているのか
著者: 齋藤昭彦1
所属機関: 1国際医療福祉大学保健学部理学療法学科
ページ範囲:P.391 - P.397
文献購入ページに移動はじめに
腰部脊柱は前方に位置する椎体間関節(以下,椎間板)と後方に位置する2つの椎間関節により連結された多分節構造である.椎間板は椎体と椎体との間にある軟骨関節であり,椎間関節は一対の椎骨の上関節突起と下関節突起との間の滑膜関節である.2種類の関節の機能により屈曲,伸展,側屈,回旋といった生理学的運動が可能となるが,椎間関節の関節面が矢状面に位置しているため,屈曲,伸展の可動域が比較的大きい.
腰部脊柱には可動性に加え,体重を支持し,四肢運動の土台となるための安定性が求められる.また,可動性と安定性という2つの矛盾した機能を供給するだけでなく,この領域には安静時,活動時を問わず様々な負荷が加わる1).負荷に対抗する能力は,負荷のタイプ,持続時間,スピードにより異なり,さらに,年齢,姿勢,各構造(椎体,椎間関節,椎間板,筋,関節包,靱帯)の状態や特性,神経系の統合性に左右される.本稿では主として腰部脊柱の安定性機能に注目して記載する.
腰部脊柱は前方に位置する椎体間関節(以下,椎間板)と後方に位置する2つの椎間関節により連結された多分節構造である.椎間板は椎体と椎体との間にある軟骨関節であり,椎間関節は一対の椎骨の上関節突起と下関節突起との間の滑膜関節である.2種類の関節の機能により屈曲,伸展,側屈,回旋といった生理学的運動が可能となるが,椎間関節の関節面が矢状面に位置しているため,屈曲,伸展の可動域が比較的大きい.
腰部脊柱には可動性に加え,体重を支持し,四肢運動の土台となるための安定性が求められる.また,可動性と安定性という2つの矛盾した機能を供給するだけでなく,この領域には安静時,活動時を問わず様々な負荷が加わる1).負荷に対抗する能力は,負荷のタイプ,持続時間,スピードにより異なり,さらに,年齢,姿勢,各構造(椎体,椎間関節,椎間板,筋,関節包,靱帯)の状態や特性,神経系の統合性に左右される.本稿では主として腰部脊柱の安定性機能に注目して記載する.
参考文献
1)Gracovetsky SA:The resting spine:A conceptual approach to the avoidance of spinal reinjury during rest. Phys Ther 67:549, 1987
2)Panjabi MM:The stabilizing system of the spine. PartⅠ. Function, dysfunction, adaption, and enhancement. J Spinal Disord 5:383-389, 1992
3)Panjabi MM:The stabilizing system of the spine. PartⅡ. Neutral zone and stability hypothesis. J Spinal Disord 5:383-389, 1992
4)Haher TR, et al:The role of the lumbar facet joints in spinal stability:Identification of alternative paths of loading. Spine 19:2667, 1994
5)Khoo BC, Goh JC, Lee JM, et al:A comparison of lumbosacral loads during static and dynamic activities. Australas Phys Eng Sci Med 17:55, 1994
6)Keller TS, et al:Regional variations in the compressive properties of lumbar vertebral trabeculae:Effects of disc degeneration. Spine 14:1012, 1989
7)Twomey LT, et al:Sustained flexion loading, rapid extension loading of the lumbar spine, and the physical therapy of related injuries. Physiother Pract 4:129, 1988
8)Keller TS, Nathan M:Height change caused by creep in intervertebral discs:A sagittal plane model. J Spinal Disord 12:313, 1999
9)Ahrens SF:The effect of age on intervertebral disc compression during runninng. J Orthop Sports Phys Ther 20:17, 1994
10)Klein JA, Hukins DWL:Relocation of the bending axis during flexion-extension of lumbar intervertebral discs and its implications for prolapse. Spine 8:1776, 1983
11)Klein JA, Hukins DWL:Functional differentiation in the spinal column. Eng Med 12:83, 1983
12)Haher TR, et al:The contribution of the three columns of the spine to rotational stability:A biomechanical model. Spine 14:663, 1989
13)Bogduk N:Clinical anatomy of the lumbar spine and sacrum, 4th ed. Elsevier, Edinburgh, 2005
14)Bergmark A:Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl 230:20-24, 1989
15)Richardson C, et al:Therapeutic exercise for lumbopelvic stabilization, 2nd ed. Churchill Livingstone, Edinburgh, 2004
16)Williams PL, et al(eds):Gray's anatomy, 37th ed. Churchill Livingstone, Edinburgh, pp592-604, 1989
17)Cresswell AG, et al:Observations on intra-abdominal pressure and patterns of abdominal intra-muscular activity in man. Acta Physiol Scand 144:409-418, 1992
18)Snijders CV, et al:Biomechanical modeling of sacroiliac joint stability in different postures. Spine:State of the Art Reviews 9:419-432, 1995
19)Hodges PW, et al:Preparatory trunk motion accompanies rapid upper limb movement. Exp Brain Res 124:69-79, 1999
20)Cholewicki J, et al:Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine 22:2207-2212, 1997
21)Cholewicki J, et al:Lumbar spine loads during the lifting of extremely heavy weights. Medicine and Science in Sports and Exercise 23:1179-1186, 1991
22)Gardner-Morse M, et al:Role of the muscles in lumbar spine stability in maximum extension efforts. J Orthop Res 13:802-808, 1995
23)Snijders CJ, et al:Transfer of lumbosacral load to iliac bones and legs. Part 1:biomechanics of self bracing of the sacroiliac joints and its significance for treatment and exercise. Clin Biomech 8:285-294, 1993
24)Johansson H, et al:A sensory role for the cruciate ligaments. Clin Orthop Relat Res 268:161-178, 1991
25)Indahl A, et al:Sacroiliac joint involvement in activation of the porcine spiral and gluteal musculature. J Spinal Disord 12:325-330, 1999
26)Winter DA, et al:Stiffness control of balance in quiet standing. J Neurophysiol 80:1211-1221, 1998.
27)Hodges PW, Richardson CA:Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther 77:132-144, 1997
28)Hodges PW, Richardson CA:Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp Brain Res 114:362-370, 1997
29)Gurfinkel VS:The mechanisms of postural regulation in man. Sov Sci Rev F. Phys Gen Biol 7:59-89, 1994
30)Aruin AS, Latash ML:Directional specificity of postural muscles in feed-forward postural reactions during fast voluntary arm movements. Exp Brain Res 103:323-332, 1995
31)Moseley GL, et al:Deep and superficial fibers of lumbar multifidus are differentially active during voluntary arm movements. Spine 27:E29-E36, 2002
32)Moseley GL, et al:External perturbation of the trunk in standing humans differentially activates components of the medial back muscles. J Physiol 547:581-587, 2003
33)Keshner EA, Allum JHJ:Muscle activation patterns coordinating postural stability from head to foot. In:Winters JM, Woo SLY ed:Multiple muscle systems:biomechanics and movement organization. Springer-Verlag, New York, pp481-487, 1990
34)Horak F, Nashner LM:Central programming of postural movements:adaptation to altered support surface configurations. J Neurophysiol 55:1369-1381, 1986
掲載誌情報