文献詳細
文献概要
講座 ニューロモジュレーション・3
麻痺側上肢機能とニューロモジュレーション—ブレイン・マシン・インターフェースによる脳卒中片麻痺上肢の運動機能回復
著者: 牛場潤一1
所属機関: 1慶應義塾大学理工学部生命情報学科
ページ範囲:P.1026 - P.1034
文献購入ページに移動はじめに
脳卒中片麻痺は一般に根治が難しく,生活制限,離職,介護負担,税負担に至るさまざまな次元で継続的な問題を誘引する1).脳卒中後に運動障害が残存する要因としては,損傷部位の生物学的修復が不完全であること,残存神経経路が十分に再組織化せず,代償経路が構築されないこと,学習性不使用などの二次的要因によってさらなる機能不全が進むことが挙げられる2).
これに対して近年では,神経科学分野において神経機能の可塑性や運動学習に関する基礎的な知見が蓄積され,代償経路の構築を高効率に誘導する治療手法の開発が可能になりつつある3).使用依存的可塑性,タイミング依存的可塑性,強化学習,誤差学習といった可塑性と運動学習にかかわる理論的枠組みは,脳卒中片麻痺をつくり出している中枢神経系の複数の異なる領域に対して適用可能であり,今後はこうした可塑性科学にもとづく神経治療の創出が期待される.
本稿ではパイロットスタディの一つとして,ブレイン・マシン・インターフェース(brain machine interface:BMI)による脳卒中片麻痺治療の試み4)を紹介する.
脳卒中片麻痺は一般に根治が難しく,生活制限,離職,介護負担,税負担に至るさまざまな次元で継続的な問題を誘引する1).脳卒中後に運動障害が残存する要因としては,損傷部位の生物学的修復が不完全であること,残存神経経路が十分に再組織化せず,代償経路が構築されないこと,学習性不使用などの二次的要因によってさらなる機能不全が進むことが挙げられる2).
これに対して近年では,神経科学分野において神経機能の可塑性や運動学習に関する基礎的な知見が蓄積され,代償経路の構築を高効率に誘導する治療手法の開発が可能になりつつある3).使用依存的可塑性,タイミング依存的可塑性,強化学習,誤差学習といった可塑性と運動学習にかかわる理論的枠組みは,脳卒中片麻痺をつくり出している中枢神経系の複数の異なる領域に対して適用可能であり,今後はこうした可塑性科学にもとづく神経治療の創出が期待される.
本稿ではパイロットスタディの一つとして,ブレイン・マシン・インターフェース(brain machine interface:BMI)による脳卒中片麻痺治療の試み4)を紹介する.
参考文献
1)牛場潤一:第4章 高齢社会を支えるテクノロジーはどうあるべきか.清家 篤(編著):金融ジェロントロジー.東洋経済新書,2017
2)Hermann DM, et al:Promoting brain remodelling and plasticity for stroke recovery:therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol 11:369-380, 2012
3)Ganguly K, et al:Neurorehabilitation:motor recovery after stroke as an example. Ann Neurol 74:373-381, 2013
4)Ushiba J, et al:Brain-machine interfaces for rehabilitation of poststroke hemiplegia. Prog Brain Res 228:163-183, 2016
5)厚生労働省:平成26年 患者調査 表5-1受療率(人口10万対)の年次推移,入院−外来×傷病分類別(昭和54年〜平成5年),表5-2受療率(人口10万対)の年次推移,入院−外来×傷病分類別(平成8年〜26年).2014
6)豊永敏宏(責任編集):症例に見る脳卒中の復職支援とリハシステム.p9,12,労働者健康福祉機構,2011
7)厚生労働省:平成25年国民生活基礎調査の概況 統計表 第14表 要介護度別にみた介護が必要となった主な原因の構成割合.p14,2016
8)Nakayama D, et al:Injury-induced neural stem/progenitor cells in post-stroke human cerebral cortex. Eur J Neurosci 31:90-98, 2010
9)Kaneko S, et al:A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the inured spinal cord. Nat Med 12:1380-1389, 2006
10)Raghavan P:Upper limb motor impairment after stroke. Phys Med Rehabil Clin N Am 26:599-610, 2015
11)Murphy TH, et al:Plasticity during stroke recovery:from synapse to behaviour. Nat Rev Neurosci 10:861-872, 2009
12)Hallett M:Plasticity of the human motor cortex and recovery from stroke. Brain Res Rev 36:169-174, 2001
13)Dobkin BH:Strategies for stroke rehabilitation. Lancet Neurol 3:528-536, 2004
14)Kwakkel G, et al:Constraint-induced movement therapy after stroke. Lancet Neurol 14:224-234, 2015
15)Cauraugh J, et al:Chronic motor dysfunction after stroke:recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke 31:1360-1364, 2000
16)Raghavan P:Upper limb motor impairment after stroke. Phys Med Rehabil Clin N Am 26:599-610, 2015
17)Kawakami M, et al:A new therapeutic application of brain-machine interface(BMI)training followed by hybrid assistive neuromuscular dynamic stimulation(HANDS)therapy for patients with severe hemiparetic stroke:a proof of concept study. Restor Neurol Neurosci 34:789-797, 2016
18)Yin S, et al:Amplitude of sensorimotor mu rhythm is correlated with BOLD from multiple brain regions:a simultaneous EEG-fMRI study. Front Hum Neurosci 10:364, 2016. doi:10.3389/fnhum.2016.00364
19)Takemi M, et al:Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex. J Neurophysiol 110:1158-1166, 2013
20)Tsuchimoto S, et al:Resting-state fluctuations of EEG sensorimotor rhythm reflect BOLD activities in the pericentral areas:a simultaneous EEG-fMRI study. Fron Hum Neurosci 11:356, 2017
21)Takemi M, et al:Sensorimotor event-related desynchronization represents the excitability of human spinal motoneurons. Neuroscience 297:58-67, 2015
22)Mukaino M, et al:Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke. J Rehabil Med 46:378-382, 2014
23)Buch E, et al:Think to move:a neuromagnetic brain-computer interface(BCI)system for chronic stroke. Stroke 39:910-917, 2008
24)Daly JJ, et al:Feasibility of a new application of noninvasive Brain Computer Interface(BCI):a case study of training for recovery of volitional motor control after stroke. J Neurol Phys Ther 33:203-211, 2009
25)Prasad G, et al:Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery:a feasibility study. J Neuroeng Rehabil 7:60, 2010. doi:10.1186/1743-0003-7-60
26)Pichiorri F, et al:Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol 77:851-865, 2015
27)Ramos-Murguialday A, et al:Brain-machine interface in chronic stroke rehabilitation:a controlled study. Ann Neurol 74:100-108, 2013
28)Ang KK, et al:Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation:results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng 7:30, 2014. doi:10.3389/fneng.2014.00030
29)Monge-Pereira E, et al:Use of electroencephalography brain-computer interface systems as a rehabilitative approach for upper limb function after a stroke:a systematic review. In press
30)Cervera M, et al:Brain-computer interfaces for post-stroke motor rehabilitation:a meta-analysis. 10th World Congress for Neurorehabilitation, Mumbai, India, Feb 2018(scheduled)
31)Bawa P, et al:Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects. Exp Brain Res 158:385-390, 2004
32)Brandnam LV, et al:Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex 22:2662-2671, 2012
33)Hasegawa K, et al:Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles. J Neuroeng Rehabil 14:85, 2017. doi:10.1186/s12984-017-0294-2
34)Okuyama K, et al:Laterality of sensorimotor cortex activation during shoulder flexion in patients with chronic stroke. International Neurorehabilitation Symposium(INS)2017, London, UK, July 2017
35)Liu F, et al:Development of brain machine interface(BMI)robot therapy for shoulder flexion movement in patients with hemiparetic stroke. 11th International Society of Physical & Rehabilitation Medicine(ISPRM)World Congress, Buenos Aires, Argentina, Apr-May, 2017
36)Takasaki K, et al:Targeted up-conditioning of contralesional corticospinal pathways promotes motor recovery in poststroke patients with severe chronic hemiplegia. The Annual BCI Award 2017 Top 12 Nominees, 2017
37)Hiramoto M, et al:Effect of brain-machine interface therapy on proximal upper extremity motor functions in patients with chronic severe hemiparetic stroke. International Neurorehabilitation Symposium(INS)2017, London, UK, July 2017
38)Kasashima-Shindo Y, et al:Brain-computer interface training combined with transcranial direct current stimulation in patients with chronic severe hemiparesis:Proof of concept study. J Rehabil Med 47:318-324, 2015
39)Soekadar SR, et al:Enhancing hebbian learning to control brain oscillatory activity. Cereb Cortex 25:2409-2415, 2015
40)Shiman F, et al:Classification of different reaching movements from the same limb using EEG. J Neural Eng 14:046018, 2017
41)Edwards D, et al:Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans:a basis for high-definition tDCS. Neuroimage 74:266-275, 2013
42)Wiethoff S, et al:Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul 7:468-475, 2014
43)Hamada M, et al:Two distinct interneuron circuits in human motor cortex are linked to different subsets of physiological and behavioral plasticity. J Neurosci 34:12837-12849, 2014
44)Hordacre B, et al:Variability in neural excitability and plasticity induction in the human cortex:a brain stimulation study. Brain Stimul 10:588-595, 2017
45)Clausen J, et al:Help, hope, and hype:ethical dimensions of neuroprosthetics. Science 356:1338-1339, 2017
掲載誌情報