文献詳細
文献概要
特集 歩行PART 1 脳神経疾患と歩行
脳性麻痺による歩行障害の評価と治療
著者: 大畑光司1
所属機関: 1京都大学大学院医学研究科人間健康科学系専攻
ページ範囲:P.1303 - P.1308
文献購入ページに移動Point
●脳性麻痺による歩行障害を考える際には,対象者のもつ発達障害をまず明確にする必要がある
●歩行障害に対する治療の第一選択は課題特異的な歩行トレーニングである
●ロボットを用いたトレーニングは歩行機能の発達や維持に有効であり,さらなる技術の発展が望まれる
●脳性麻痺による歩行障害を考える際には,対象者のもつ発達障害をまず明確にする必要がある
●歩行障害に対する治療の第一選択は課題特異的な歩行トレーニングである
●ロボットを用いたトレーニングは歩行機能の発達や維持に有効であり,さらなる技術の発展が望まれる
参考文献
1)Lepage C, et al:Association between characteristics of locomotion and accomplishment of life habits in children with cerebral palsy. Phys Ther 1998;78:458-469
2)Barbeau H:Locomotor training in neurorehabilitation:emerging rehabilitation concepts. Neurorehabil Neural Repair 2003;17:3-11
3)Booth ATC, et al:The efficacy of functional gait training in children and young adults with cerebral palsy:a systematic review and meta-analysis. Dev Med Child Neurol 2018;60:866-883
4)Baker R, et al:The gait profile score and movement analysis profile. Gait Posture 2009;30:265-269
5)Moreau NG, et al:Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy:systematic review and meta-analysis. Phys Ther 2016;96:1938-1954
6)Schranz C, et al:Does home-based progressive resistance or high-intensity circuit training improve strength, function, activity or participation in children with cerebral palsy? Arch Phys Med Rehabil 2018;99:2457-2464
7)Carvalho I, et al:Robotic gait training for individuals with cerebral palsy:a systematic review and meta-analysis. Arch Phys Med Rehabil 2017;98:2332-2344
8)Sloot LH, et al:Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy. Gait Posture 2015;42:498-504
9)Valentin-Gudiol M, et al:Treadmill interventions with partial body weight support in children under six years of age at risk of neuromotor delay. Cochrane Database Syst Rev 2011;CD009242. doi:10.1002/14651858.CD009242.pub2
10)Mattern-Baxter K, et al:Effects of home-based locomotor treadmill training on gross motor function in young children with cerebral palsy:a quasi-randomized controlled trial. Arch Phys Med Rehabil 2013;94:2061-2067
11)Butler PB, et al:Refinement, reliability, and validity of the segmental assessment of trunk control. Pediatr Phys Ther 2010;22:246-257
12)Curtis DJ, et al:The central role of trunk control in the gross motor function of children with cerebral palsy:a retrospective cross-sectional study. Dev Med Child Neurol 2015;57:351-357
13)Curtis DJ, et al:The functional effect of segmental trunk and head control training in moderate-to-severe cerebral palsy:a randomized controlled trial. Dev Neurorehabil 2018;21:91-100
14)Flores MB, et al:Trunk control and gross motor outcomes after body weight supported treadmill training in young children with severe cerebral palsy:a non-experimental case series. Dev Neurorehabil 2019;22:499-503
15)van Hedel HJ, et al:Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy. Dev Neurorehabil 2016;19:410-415
16)Morgan P, et al:Gait function and decline in adults with cerebral palsy:a systematic review. Disabil Rehabil 2014;36:1-9
17)Bottos M, et al:Functional status of adults with cerebral palsy and implications for treatment of children. Dev Med Child Neurol 2001;43:516-528
18)Moll LR, et al:The paradox of normalization through rehabilitation:growing up and growing older with cerebral palsy. Disabil Rehabil 2013;35:1276-1283
19)Opheim A, et al:Walking deterioration and gait analysis in adults with spastic bilateral cerebral palsy. Gait Posture 2013;37:165-171
20)Parent A, et al:Muscle fatigue during a short walking exercise in children with cerebral palsy who walk in a crouch gait. Gait Posture 2019;72:22-27
21)Kawasaki S, et al:Gait improvements by assisting hip movements with the robot in children with cerebral palsy:a pilot randomized controlled trial. J Neuroeng Rehabil 2020;17:87. doi:10.1186/s12984-020-00712-3
掲載誌情報