1)Abu-Faraj ZO, et al:Human gait and clinical movement analysis, 2nd ed. Wiley encyclopedia of electrical and electronics engineering. pp1-34, Wiley, New York, 2015
2)飯田 勝:歩行分析の目的,歴史,方法.理学療法と作業療法1986;20:40-46
3)Cao Z, et al:OpenPose:realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans Pattern Anal Mach Intell 2021;43:172-186
4)Votel R, et al:Next-generation pose detection with MoveNet and TensorFlow. js. 2021. https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html(2023年11月29日閲覧)
5)Bazarevsky V, et al:BlazePose:on-device real-time body pose tracking. arXiv 2020. doi:10.48550/arXiv.2006.10204
6)Uhlrich SD, et al:OpenCap:Human movement dynamics from smartphone videos. PLoS Comput Biol 2023;19:e1011462. doi:10.1371/journal.pcbi.1011462
7)Mathis A, et al:DeepLabCut:markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci 2018;21:1281-1289
8)Yamamoto M, et al:Accuracy of temporo-spatial and lower limb joint kinematics parameters using OpenPose for various gait patterns with orthosis. IEEE Trans Neural Syst Rehabil Eng 2021;29:2666-2675
9)John K, et al:Accuracy of video-based gait analysis using pose estimation during treadmill walking versus overground walking in persons after stroke. Phys Ther 2023:pzad121. doi:10.1093/ptj/pzad121
10)Washabaugh EP, et al:Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Gait Posture 2022;97:188-195
11)Horsak B, et al:Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait. J Biomech 2023;159:111801. doi:10.1016/j.jbiomech.2023.111801
12)Stenum J, et al:Two-dimensional video-based analysis of human gait using pose estimation. PLoS Comput Biol 2021;17:e1008935. doi:10.1371/journal.pcbi.1008935
13)Wade L, et al:Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. PeerJ 2022;10:e12995. doi:10.7717/peerj.12995
14)Kidziński Ł, et al:Deep neural networks enable quantitative movement analysis using single-camera videos. Nat Commun 2020;11:4054. doi:10.1038/s41467-020-17807-z
15)Ng KD, et al:Measuring gait variables using computer vision to assess mobility and fall risk in older adults with dementia. IEEE J Transl Eng Health Med 2020;8:2100609. doi:10.1109/JTEHM.2020.2998326
16)Zhao N, et al:See your mental state from your walk:recognizing anxiety and depression through Kinect-recorded gait data. PLoS One 2019;14:e0216591. doi:10.1371/journal.pone.0216591.
17)Wang Y, et al:Detecting depression through gait data:examining the contribution of gait features in recognizing depression. Front Psychiatry 2021;12:661213. doi:10.3389/fpsyt.2021.661213