文献詳細
文献概要
特集 “行為”の回復のための理学療法
行為の質を捉える試み
著者: 濵田裕幸1
所属機関: 1東京大学大学院工学系研究科
ページ範囲:P.540 - P.545
文献購入ページに移動Point
●行為の能力を定量化するための多様な動作解析手法が存在する
●多様な動作解析手法の特徴を理解し,メリットとデメリットを考慮のうえで手法の選択をすることが重要である
●効果判定にとどまらず行為の学習プロセスを理解する試みも必要である
●行為の能力を定量化するための多様な動作解析手法が存在する
●多様な動作解析手法の特徴を理解し,メリットとデメリットを考慮のうえで手法の選択をすることが重要である
●効果判定にとどまらず行為の学習プロセスを理解する試みも必要である
参考文献
1)日本理学療法士協会:理学療法士とは.https://www.japanpt.or.jp/about_pt/therapy/(2023年12月10日閲覧)
2)van der Kruk E, et al:Accuracy of human motion capture systems for sport applications;state-of-the-art review. Eur J Sport Sci 2018;18:806-819
3)Drazan JF, et al:Moving outside the lab:markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump. J Biomech 2021;125:110547. doi:10.1016/j.jbiomech.2021.110547
4)Thomas J, et al:Comparison of Azure Kinect and optical retroreflective motion capture for kinematic and spatiotemporal evaluation of the sit-to-stand test. Gait Posture 2022;94:153-159
5)Kadaba MP, et al:Measurement of lower extremity kinematics during level walking. J Orthop Res 1990;8:383-392
6)Tölgyessy M, et al:Evaluation of the Azure Kinect and its comparison to Kinect V1 and Kinect V2. Sensors(Basel) 2021;21:413. doi:10.3390/s21020413
7)Guess TM, et al:Comparison of Azure Kinect overground gait spatiotemporal parameters to marker based optical motion capture. Gait Posture 2022;96:130-136
8)Pathirana PN, et al:Robust real-time bio-kinematic movement tracking using multiple kinects for tele-rehabilitation. IEEE Trans Industr Electron 2016;63:1822-1833
:a software package for animal pose estimation. https://www.mackenziemathislab.org/deeplabcut(2023年12月10日閲覧)
10)Karashchuk P, et al:Anipose:a toolkit for robust markerless 3D pose estimation. Cell Rep 2021;36:109730. doi:10.1016/j.celrep.2021.109730
11)Kosourikhina V, et al:Validation of deep learning-based markerless 3D pose estimation. PLoS One 2022;17:e0276258. doi:10.1371/journal.pone.0276258
12)Kanko RM, et al:Inter-session repeatability of markerless motion capture gait kinematics. J Biomech 2021;121:110422. doi:10.1016/j.jbiomech.2021.110422
13)Wren TAL, et al:Comparison of kinematics between Theia markerless and conventional marker-based gait analysis in clinical patients. Gait Posture 2023;104:9-14
14)Lee J, et al:Sensitivity comparison of inertial to optical motion capture during gait:implications for tracking recovery. IEEE Int Conf Rehabil Robot 2019;2019:139-144
15)Park J, et al:Relationships of stroke patients' gait parameters with fear of falling. J Phys Therapy Sci 2014;26:1883-1884
16)Moan ME, et al:Experiences of stroke survivors and clinicians with a fully immersive virtual reality treadmill exergame for stroke rehabilitation:a qualitative pilot study. Front Aging Neurosci 2021;13:735251. doi:10.3389/fnagi.2021.735251
17)樋口耕一:計量テキスト分析およびKH Coderの利用状況と展望.社会学評論2017;68:334-350
18)Hernando D, et al:Validation of the Apple Watch for heart rate variability measurements during relax and mental stress in healthy subjects. Sensors 2018;18. doi:10.3390/s18082619
19)Fernandes A, et al:Determination of stress using blood pressure and galvanic skin response. 2014 International Conference on Communication and Network Technologies. pp165-168, IEEE, 2014. doi:10.1109/CNT.2014.7062747
20)Priya TH, et al:Stress detection from EEG using power ratio. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). pp1-6, IEEE, 2020. doi:10.1109/ic-ETITE47903.2020.401
21)Doyle C, et al:A systematic review of evidence on the links between patient experience and clinical safety and effectiveness. BMJ Open 2013;3. doi:10.1136/bmjopen-2012-001570
22)Dhawale AK, et al:The role of variability in motor learning. Annu Rev Neurosci 2017;40:479-498
23)Wu HG, et al:Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat Neurosci 2014;17:312-321
掲載誌情報