icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩60巻4号

2008年04月発行

増大特集 神経系の発生とその異常

発生・進化学的視点からみた大脳皮質の多様性の獲得機構

著者: 野村真12

所属機関: 1東北大学大学院医学系研究科附属創生応用医学研究センター形態形成解析分野 2現 カロリンスカ研究所分子生物学部門

ページ範囲:P.335 - P.342

文献概要

はじめに

 “Nothing in biology makes sense except in the light of evolution1

 「何故ヒトの脳は大きいのだろうか?」という問いに対して,多くの読者はヒト脳の容積の増大に伴う生理学的・機能的な意味,いわゆる合目的な答えを提示されれば満足されるかもしれない。あるいは「どのようにしてヒトの脳は作りだされるのだろうか?」という問いに対して,われわれは近年の分子生物学,発生生物学の飛躍的な成果を披露して答えることができるだろう。しかし,「何故ヒトの脳は他の動物と違って大きくなったのだろうか?」という問いは,形態獲得の内在的機構とそれを許した環境との歴史を問うているわけで,上記の答えを統合した,いわゆる進化学的な答えを用意しなくてはいけない。形態は機能と連関し,それらが環境によって選別されてきたのであれば,人間性(これも曖昧な言葉ではあるが)を生み出すわれわれの脳は,いつ,どのようにして他の動物と袂を分かちあったのだろうか。19世紀の偉大な古生物学・解剖学者であるRichard Owenは,類人猿と人類の脳の比較を行い,ヒト脳にのみ認められる構造物を同定し,これを「小海馬(hippocampus minor)」と名付けた2。あるいはDNAの構造の発見で知られるFrancis Crickは晩年,大脳基底核の一部である前障(claustrum)に着目し,これこそが人間性の本質を生み出す構造物であると主張した3。分子神経生物学,比較形態学的解析によって,脳の形態学的な差異を生み出す分子メカニズムについてはかなり多くの知見が得られているが,意外に脳の専門的研究者の間でもその研究成果は浸透していない。そこで本稿では,特に脊椎動物の大脳皮質に焦点を絞って,①羊膜類の大脳皮質の比較発生学的解析,②哺乳類大脳皮質の形態・機能的多様性の獲得を論じ,最後に③古人類から現世人類に至る過程での大脳皮質の進化に関する仮説を紹介したい。

参考文献

1) Dobzhansky T: Nothing in biology makes sense except in the light of evolution. The American Biology Teacher 35: 125-129, 1973
2) Owen R: On the characters, principles of division, and primary groups of the class Mammalia. J Proc Linn Soc 2: 1-37, 1858
3) Crick FC, Koch C: What is the function of the claustrum? Philos Trans R Soc Lond B Biol Sci 360: 1271-1279, 2005
4) Fernandez AS, Pieau C, Reperant J, Boncinelli E, Wassef M: Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125: 2099-2111, 1998
5) Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, et al: Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424: 409-438, 2000
6) Murakami Y, Ogasawara M, Sugahara F, Hirano S, Satoh N, et al: Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates. Development 128: 3521-3531, 2001
7) Marin O, Rubenstein JL: Cell migration in the forebrain. Annu Rev Neurosci 26: 441-483, 2003
8) Cobos I, Puelles L, Martinez S: The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas). Dev Biol 239: 30-45, 2001
9) Tuorto F, Alifragis P, Failla V, Parnavelas JG, Gulisano M: Tangential migration of cells from the basal to the dorsal telencephalic regions in the chick. Eur J Neurosci 18: 3388-3393, 2003
10) Metin C, Alvarez C, Moudoux D, Vitalis T, Pieau C, et al: Conserved pattern of tangential neuronal migration during forebrain development. Development 134: 2815-2827, 2007
11) Balaban CD, Ulinski PS: Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. I. Projections of thalamic nuclei. J Comp Neurol 200: 95-129, 1981
12) Aboitiz F, Montiel J, Morales D, Concha M: Evolutionary divergence of the reptilian and the mammalian brains: considerations on connectivity and development. Brain Res Brain Res Rev 39: 141-153, 2002
13) Karten HJ: The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann NY Acad Sci 167: 164-179, 1969
14) Butler AB: The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res Brain Res Rev 19: 66-101, 1994
15) Reiner AJ: A hypothesis as to the organization of cerebral cortex in the common amniote ancestor of modern reptiles and mammals. Novartis Found Symp 228: 83-102; discussion 102-113, 2000
16) Holmgren N: Points of view concerning forebrain morphology in higher vertebrates. Acta Zool Stockh 6: 423-477, 1925
17) Bruce LL, Neary TJ: The limbic system of tetrapods: a comparative analysis of cortical and amygdalar projections. Brain Behav Evol 46: 224-234, 1995
18) Striedter GF: The telencephalon of tetrapods in evolution. Brain Behav Evol 49: 179-213, 1997
19) Ashwell K, Hardman C, Paxinos G: The claustrum is not missing from all monotreme brains. Brain Behav Evol 64: 223-241, 2004
20) Medina L, Legaz I, Gonzalez G, De Castro F, Rubenstein JL, et al: Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8, and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex. J Comp Neurol 474: 504-523, 2004
21) Tole S, Remedios R, Saha B, Stoykova A: Selective requirement of Pax6, but not Emx2, in the specification and development of several nuclei of the amygdaloid complex. J Neurosci 25: 2753-2760, 2005
22) Ishii Y, Nakamura S, Osumi N: Demarcation of early mammalian cortical development by differential expression of fringe genes. Brain Res Dev Brain Res 119: 307-320, 2000
23) Haubensak W, Attardo A, Denk W, Huttner WB: Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A 101: 3196-3201, 2004
24) Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, et al: Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131: 3133-3145, 2004
25) Lukaszewicz A, Savatier P, Cortay V, Giroud P: G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47: 353-364, 2005
26) Martinez-Cerdeno V, Noctor SC, Kriegstein AR: The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 16(Suppl 1): i152-i161, 2006
27) Aboitiz F, Morales D, Montiel J: The evolutionary origin of the mammalian isocortex: towards an integrated developmental and functional approach. Behav Brain Sci 26: 535-552; discussion 552-585, 2003
28) Bulfone A, Martinez S, Marigo V, Campanella M, Basile A, et al: Expression pattern of the Tbr2 (Eomesodermin) gene during mouse and chick brain development. Mech Dev 84: 133-138, 1999
29) D'Arcangelo G, Miao GG, Chen SC, Scares HD, Morgan JI, et al: A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374: 719-723, 1995
30) Schiffmann SN, Bernier B, Goffinet AM: Reelin mRNA expression during mouse brain development. Eur J Neurosci 9: 1055-1071, 1997
31) Rice DS, Curran T: Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24: 1005-1039, 2001
32) Tissir F, Lambert de Rouvroit C, Goffinet AM: The role of reelin in the development and evolution of the cerebral cortex. Braz J Med Biol Res 35: 1473-1484, 2002
33) Aboitiz F, Montiel J, Lopez J: Critical steps in the early evolution of the isocortex: insights from developmental biology. Braz J Med Biol Res 35: 1455-1472, 2002
34) Hartfuss E, Foster E, Bock HH, Hack MA, Leprince P, et al: Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130: 4597-4609, 2003
35) Magdaleno S, Keshvara L, Curran T: Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron 33: 573-586, 2002
36) Zhao S, Chai X, Forster E, Frotscher M: Reelin is a positional signal for the lamination of dentate granule cells. Development 131: 5117-5125, 2004
37) Bachy I, Vernier P, Retaux S: The LIM-homeodomain gene family in the developing Xenopus brain: conservation and divergences with the mouse related to the evolution of the forebrain. J Neurosci 21: 7620-7629, 2001
38) Bielle F, Giveal A, Narbox-Neme N, Vigneaul S, Sigris M, et al: Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci 8: 1002-1012, 2005
39) Hand R, Bortone D, Mattar P, Nguyen L, Heng JI, et al: Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48: 45-62, 2005
40) Caviness VS Jr, Takahashi T, Nowakowski RS: Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci 18: 379-383, 1995
41) Chenn A, Walsh CA: Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297: 365-369, 2002
42) Inglis-Broadgate SL, Thomson RE, Pellicano F, Tartaglia MA, Pontikis CC, et al: FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development. Dev Biol 279: 73-85, 2005
43) Sur M, Rubenstein JL: Patterning and plasticity of the cerebral cortex. Science 310: 805-810, 2005
44) Miyashita-Lin EM, Hevner R, Wassarman KM, Martinez S, Rubenstein JL: Early neocortical regionalization in the absence of thalamic innervation. Science 285: 906-909, 1999
45) Fukuchi-Shimogori T, Grove EA: Neocortex patterning by the secreted signaling molecule FGF8. Science 294: 1071-1074, 2001
46) Takahata T, Komatsu Y, Watakabe A, Hashikawa T, Tochitani S, et al: Activity-dependent expression of occ1 in excitatory neurons is a characteristic feature of the primate visual cortex. Cereb Cortex 16: 929-940, 2006
47) Gitton Y, Cohen-Tannoudji M, Wassef M: Role of thalamic axons in the expression of H-2Z1, a mouse somatosensory cortex specific marker. Cereb Cortex 9: 611-620, 1999
48) Smart IH, McSherry GM: Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes. J Anat 147: 27-43, 1986
49) Eriksson SH, Thom M, Hefferman J, Lin WR, Harding BN, et al: Persistent reelin-expressing Cajal-Retzius cells in polymicrogyria. Brain 124: 1350-1361, 2001
50) 諏訪 元: 化石からみた人類の進化. シリーズ進化学5 ヒトの進化, 岩波書店, 東京, 2006
51) Kappelman J: The evolution of body mass and relative brain size in fossil hominids. J Human Evol 30: 243-276, 1996
52) Green RE, Noonan JP, Coop G, Kudaravalli S, Smith D, et al: Analysis of one million base pairs of Neanderthal DNA. Nature 444: 330-336, 2006
53) Noonan JP, Coop G, Kudaravalli S, Smith D, et al: Sequencing and analysis of Neanderthal genomic DNA. Science 314: 1113-1118, 2006
54) ショーン・B・キャロル(著), 渡辺政隆, 経塚淳子(翻訳): シマウマの縞 蝶の模様―エボデボ革命が解き明かす生物デザインの起源―. 光文社, 東京, 2007
55) Mellars P: Neanderthals and the modern human colonization of Europe. Nature 432: 461-465, 2004
56) スティーブン・ミズン(著), 松浦俊介, 牧野美佐緒 (翻訳): 心の先史時代. 青土社, 東京, 1998
57) Huffman KJ, Garel S, Rubenstein JL: Fgf8 regulates the development of intra-neocortical projections. J Neurosci 24: 8917-8923, 2004
58) Bai W, Ishida M, Okabe M, Arimatsu Y: Role of the protomap and target-derived signals in the development of intrahemispheric connections. Cereb Cortex 16: 124-135, 2006
59) Donoghue MJ, Rakic P: Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J Neurosci 19: 5967-5979, 1999
60) Cholfin JA, Rubenstein JL: Patterning of frontal cortex subdivisions by Fgf17. Proc Natl Acad Sci U S A 104: 7652-7657, 2007
61) Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, et al: An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443: 167-172, 2006
62) Nickerson E, Nelson DL: Molecular definition of pericentric inversion breakpoints occurring during the evolution of humans and chimpanzees. Genomics 50: 368-372, 1998

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら