icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩60巻4号

2008年04月発行

増大特集 神経系の発生とその異常

樹状突起構造の形成と維持を制御する分子基盤

著者: 榎本和生1

所属機関: 1国立遺伝学研究所神経形態研究室

ページ範囲:P.351 - P.364

文献概要

はじめに

 かつて,神経線維が連続的な構造物ではなく,ニューロンという最小単位から構成される不連続的なネットワークであることを提唱したのはRamon y Cajalである。Cajalを「ニューロン説」へと導いた方法論はいたってシンプルであり,ありとあらゆる生物の神経標本をゴルジ法により染色し,そのニューロンの形態を徹底的に模写することであった。固定した標本の観察から「ニューロンは,軸索(axon)と樹状突起(dendrite)という2種の機能的・構造的に異なる神経突起を持ち,情報は樹状突起から軸索へと一方向に流れる」ことを看破したのであるから,何たる慧眼であろう。

 一世紀を経た現代でもなお,Cajalのスケッチは見る者に新鮮なインスピレーションを与えてくれる。実際に模写を眺めると,実に多様かつ特徴的な形状をした樹状突起が描かれている(Fig.1)。しかし,その配置は決してランダムではなく,明らかな規則性を持っている。例えば,似通った形状の樹状突起は必ず互いに固まって,層状もしくはカラム状に配置されている。小脳に特徴的なプルキンエ細胞様の樹状突起パターンを持つニューロンが,突如として大脳皮質に出現することはない。さらに,層内に存在するニューロン群に注目すると,同種の樹状突起はほぼ同一方向に整然と陳列されている。したがって,ニューロンはそれぞれ固有の「位置」に決まった「パターン(大きさ,複雑さ,方向,形態)」を持った受容領域を形成するようにプログラムされており,それが正確かつ効率的な神経回路網形成や情報処理の構造的基盤となっていることが推測できる。それでは,樹状突起の「位置」や「パターン」は,発生の過程においてどのように決定されるのだろうか?

 最近,in vivoイメージング技術の向上や新たなプローブの開発,ゼブラフィッシュやショウジョウバエなどのモデル生物を用いた解析手法の確立に伴い,生体内における樹状突起のダイナミクスを詳細に観察しながら,同時にその分子基盤を同定することが可能となってきた。その結果,ニューロンは,自身が持つ遺伝情報に加えて,細胞外からの情報に依存して受容領域の「位置」や「パターン」を決定することが明らかとなり,その分子基盤に関する理解も進んでいる。また,ニューロンが一度受容領域を確定させると,それを積極的に「維持」するメカニズムが作動することも示唆されつつある。本稿では,技術革新に伴い明らかになってきたニューロンの固有の樹状突起構造を獲得し,それを維持するメカニズムについて,最近の知見を取り上げて概説する。なお,誌面の都合上,スパイン(spine)の形成・維持機構については触れない。興味ある方は,最近の優れた総説12を参考にされたい。

参考文献

1) 河西晴郎, 松崎正紀, 野田 潤, 安松信明, 本蔵直樹: 樹状突起スパインの形態・安定性・機能関連.蛋白質核酸酵素49: 276-281, 2004
2) 井ノ口 馨, 斉藤喜人: スパインアクチンの動態とシナプス形態の可塑性. 蛋白質核酸酵素: 49: 282-286, 2004
3) Dotti CG, Sullivan CA, Banker GA: The establishment of polarity by hippocampal neurons in culture. J Neurosci 8: 1454-1468, 1988
4) Arimura N, Kaibuchi K: Neuronal polarity: from extracellular signals to intracellular mechanisms. Net Rev Neurosci 8: 194-205, 2007
5) Horton AC, Ehlers MD: Neuronal polarity and trafficking. Neruron 40: 277-295, 2003
6) de Anda FC, Pollarolo G, da Silva JS, Campletto PG, Feiguin F, et al: Centrosome localization determines neuronal polarity. Nature 436: 704-708, 2005
7) Meyers PZ, Eisen JS, Westerfield M: Development and axonal growth of identified motoneurons in the zebrafish. J Neurosci 6: 2278-2289, 1986
8) Westerfield M, McMurray JV, Eisen JS: Identified motoneurons and their innervation of axial muscles in the zebrafish. J Neurosci 6: 2267-2277, 1986
9) Gao FB, Brenman JE, Jan LY, Jan YN: Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev 13: 2549-2561, 1999
10) Rolls MM, Doe CQ: Baz, Par-6 and aPKC are not required for axon or dendrite specification in Drosophila. Nat Neurosci 7: 1293-1295, 2004
11) Basto R, Lau J, Vinogradova T, Cardiol A, Woods CG, et al: Flies without centrioles. Cell 125: 1375-1386, 2006
12) Lein P, Johnson M, Guo X, Rueger D, Higgins D: Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 15: 597-605, 1995
13) Le Roux P, Behar S, Higgins D, Charette M: OP-1 enhances dendritic growth from cerebral cortical neurons in vitro. Exp Neurol 160: 151-163, 1999
14) Bauch H, Stier H, Schlosshauer B: Axonal versus dendritic outgrowth is differentially affected by radial glia in discrete layers of retina. J Neurosci 18: 1774-1785, 1998
15) Goldberg JL, Klassen MP, Hua Y, Barres BA: Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296: 1860-1864, 2002
16) Polleux F, Morrow T, Ghosh A: Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404: 567-573, 2000
17) Sasaki Y, Cheng C, Uchida Y, Nakajima O, Ohshima T, et al: Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 35: 907-920, 2002
18) 榎本和生: ニューロンはどのようにして固有の受容領域を獲得し, それを維持・管理するのか?蛋白質核酸酵素52: 842-852, 2007
19) Komiyama T, Luo L: Development of wiring specificity in the olfactory system. Curr Opn Neurobiol 16: 67-73, 2006
20) Wong ROL, Ghosh A: Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 3: 803-812, 2002
21) Togashi H, Miyoshi J, Honda T, Sakisaka T, Takai Y, et al: Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. J Cell Biol 174: 141-151, 2006
22) Shen K, Fetter RD, Bargmann CI: Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116: 869-881, 2004
23) Zipursky SL, Wojtowicz WM, Hattori D: Got diversity? Wiring the fly brain with Dscam. Trends Biochem Sci 31: 581-588, 2006
24) Yamagata M, Sanes JR, Weiner JA: Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Curr Opin Cell Biol 15: 621-632, 2003
25) Parrish JZ, Kim MD, Jan LY, Jan YN: Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites. Genes Dev 20: 820-835, 2006
26) Sugimura K, Satoh D, Estes P, Crews S, Uemura T: Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt. Neuron 43: 809-822, 2004
27) Li W, Wang F, Menut L, Gao FB: BTB/POZ-zinc finger protein abrupt suppresses dendritic branching in a neuronal subtype-specific and dosage-dependendt manner. Neuron 43: 823-834, 2004
28) Grueber WB, Jan LY, Jan YN: Different levels of the homeodomain protein cut regulates distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 112: 805-818, 2003
29) Kim MD, Jan LY, Jan YN: The bHLH-PAS protein Spaineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons. Genes Dev 20: 2806-2819, 2006
30) McAllister AK, Katz LC, Lo DC: Opposing roles of endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18: 767-778, 1997
31) Horch HW, Katz LC: BDNF releases from single neuron cells elicits local dendritic growth in nearby neurons. Nat Neurosci 5: 1177-1184, 2002
32) Sestan N, Artavanis-Tsakonas S, Rakic P: Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286: 741-746, 1999
33) Soba P, Zhu S, Emoto K, Younger S, Yang SJ, et al: Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 54: 403-416, 2007
34) Hughes ME, Bortnick R, Tsubouchi A, Baumer P, Kondo M, et al: Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 54: 417-427, 2007
35) Wassle H, Boycott BB: Functional architecture of the mammalian retina. Physiol Rev 71: 447-480, 1991
36) Perry VH, Linden R: Evidence for dendritic competition in the developing retina. Nature 297: 683-685, 1982
37) Grueber WB, Ye B, Moore AW, Jan LY, Jan YN: Dendrites of distinct classes of Drosophila sensory neurons show different capacities for homophilic repulsion. Curr Biol 13: 618-626, 2003
38) Sugimura K, Yamamoto M, Niwa R, Satoh D, Goto S, et al: Distinct developmental modes and lesion-induced reactions of dendrites of two classes of Drosophila sensory neurons. J Neurosci 23: 3752-3760, 2003
39) Emoto K, He Y, Ye B, Grueber WB, Adler PN, et al: Control of dendritic branching and tiling by Tricornered-kinase/Furry signaling pathway in Drosophila sensory neurons. Cell 119: 245-256, 2004
40) Hergovich A, Stegert MR, Schmitz D, Hemmings BA: Ndr kinases regulate essential cell processes from yeast to humans. Nat Rev Mol Cell Biol 7: 253-264, 2006
41) Gallegos ME, Bargmann CI: Mechanosensory neurite termination and tiling depend on SAX-2 and the SAX-1 kinase. Neuron 44: 239-249, 2004
42) Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, et al: Long-term in vivo imaging of experience -dependent synaptic plasticity in adult cortex. Nature 420: 788-794, 2002
43) Grutzendler J, Kasthuri N, Gan WB: Long-term dendritic spine stability in the adult cortex. Nature 420: 812-816, 2002
44) Lee WC, Huang H, Feng G, Sanes JR, Brown EN, et al: Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex. PLoS Biol 4: 271-280, 2006
45) Mizrahi A, Katz LC: In vivo imaging of juxtaglomerular neuron turnover in the mouse olfactory bulb. Nat Neurosci 6: 1201-1207, 2003
46) Spigelman I, Yan XX, Obenaus A, Lee EY, Wasterlain CG, et al: Dentate granule cells from novel basal dendrites in a rat model of temporal lobe epilepsy. Neuroscience 86: 109-120, 1998
47) Ruan YW, Zou B, Fan Y, Li Y, Lin N, et al: Dendritic plasticity of CA1 pyramidal neurons after transient global ischemia. Neuroscience 140: 191-201, 2006
48) Biernaskie J, Corbett D: Enriched rehabilitative training promotes improved forelimb motor function and enriched dendrite growth after focal ischemic injury. J Neurosci 21: 5272-5280, 2001
49) Kaufmann WE, Moser HW: Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10: 981-991, 2000
50) Schulz E, Scholz B: Neurohistological findings in the parietal cortex of children with chromosome aberrations. J Hirnforsch 33: 37-62, 1992
51) Lohmann C, Wong ROL: Regulation of dendritic growth and plasticity by local and global calcium dynamics. Cell Calcium 37: 403-409, 2005
52) Cline HT: Dendritic arbor development and synaptogenesis. Curr Opin Neurobiol 11: 118-126, 2001
53) Miller FD, Kaplan DR: Signaling mechanisms underlying dendrite formation. Curr Opin Neurobiol 13: 391-398, 2003
54) Xu B, Zang K, Ruff NL, Zhang YA, McConnell SK, et al: Cortical degeneration in the absence of neutrophin signaling: dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron 26: 233-245, 2000
55) Gorski JA, Zeiler SR, Tamowski S, Jones KR: Brain-derived neutrophic factor is required for the maintenance of cortical dendrites. J Neurosci 23: 6856-6865, 2003
56) Shima Y, Kengaku M, Hirano T, Takeichi M, Uemura T: Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Dev Cell 7: 205-216, 2004
57) Moresco EMY, Donaldson S, Williamson A, Koleske AJ: Integrin-mediated dendrite branch maintenance requires Abelson (Abl) family kinases. J Neurosci 25: 6105-6118, 2005
58) Niell CM, Meyer MP, Smith SJ: In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci 7: 254-260, 2004
59) Wu GY, Cline HT: Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279: 222-226, 1998
60) Emoto K, Parrish JZ, Jan LY, Jan YN: The tumour suppressor Hippo acts with the NDR kinases in dendritic tiling and maintenance. Nature 443: 210-213, 2006
61) Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ: The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and its required for the control of cell shape and proliferation. Gene Dev 9: 534-546, 1995
62) Xu T, Wang W, Zhang S, Stewart RA, Yu W: Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121: 1053-1063, 1995
63) St John MA, Tao W, Fei X, Fukumoto R, Carcangiu ML, et al: Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet 21: 182-186, 1999
64) Huang J, Wu S, Barrera J, Matthews K, Pan D: The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122: 421-434, 2005
65) Parrish JZ, Emoto K, Jan LY, Jan YN: Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites. Genes Dev 21: 956-972, 2007
66) Parrish JZ, Emoto K, Kim MD, Jan YN: Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci 30: 399-423, 2007
67) Scott E, Luo L: How do dendrites take their shape? Nat Neurosci 4: 359-365, 2001
68) Nevidi E, Wu GY, Cline HT: Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281: 1863-1866, 1998
69) Whitford KL, Marillat V, Stein E, Coodman CS, Tessier-Lavigne M, et al: Regulation of cortical dendrite development by Slit-Robo interactions. Neuron 33: 47-61, 2002
70) Tanabe K, Takahashi Y, Sato Y, Kawakami K, Takeichi M, et al: Cadherin is required for dendrite morphogenesis and synaptic terminal organization of retinal horizontal cells. Development 133: 4085-4096, 2006
71) Zhu H, Luo L: Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. Neuron 42: 63-75, 2004
72) Tissir F, Bar I, Jossin Y, De Backer O, Goffinet AM: Protocadherin Celsr3 is crucial in axonal tract development. Nat Neurosci 8: 451-457, 2005
73) Gunnersen JM, Kim MH, Fuller SJ, De Silva M, Britto JM, et al: Sez-6 proteins affect dendritic arborization patterns and excitability of cortical pyramidal neurons. Neuron 56: 621-639, 2007
74) Luo L: Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1: 173-180, 2000
75) Li Z, Van Aelst L, Cline HT: Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat Neurosci 3: 217-225, 2000
76) Luo L, Hensch TK, Ackerman L, Barbel S, Jan LY, et al: Differential effects of Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379: 837-840, 1996
77) Threadgill R, Bobb K, Ghosh A: Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19: 625-634, 1997
78) Nakayama AY, Harms MB, Luo L: Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20: 5329-5338, 2000
79) Redmond L, Kashani AH, Ghosh A: Calcium regulation of dendritic growth via CaM IV and CREB-mediated transcription. Neuron 34: 999-1010, 2002
80) Caceres A, Mautino J, Kosik KS: Suppression of MAP2 in cultured cerebellar macroneurons inhihits minor neurite formation. Neuron 9: 607-618, 1992
81) Homma N, Takei Y, Tanaka Y, Nakata T, Terada S, et al: Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114: 229-239, 2003
82) Sharp DJ, Yu W, Ferhat L, Kuriyama R, Rueger DC, et al: Identification of a microtubule-associated motor protein essential for dendritic differentiation. J Cell Biol 138: 833-843, 1997
83) Yu W, Cook C, Sauter C, Kuriyama R, Kaplan PL, Baas PW: Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. J Neurosci 20: 5782-5791, 2000
84) Liu Z, Steward R, Luo L: Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nat Cell Biol 2: 776-783, 2000
85) Ye B, Zhang Y, Song W, Younger SH, Jan LY, et al: Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130: 717-729, 2007
86) Horton AC, Racz B, Monson EE, Lin AL, Weinberg RJ, et al: Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48: 757-771, 2005
87) Gaudilliere B, Konishi Y, da la Iglesia N, Yao G, et al: A CaMK II-Neuro D signaling pathway specifies dendritic morphogenesis. Neuron 41: 229-241, 2004
88) Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, et al: Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303: 197-202, 2004
89) Redmond L, Ghosh A: Regulation of dendritic development by calcium signaling. Cell Calcium 37: 411-416, 2005
90) Vrieseling E, Arber S: Target-induced transcriptional control of dendritic patterning and connectivity in motor neurons by the ETS gene Pea3. Cell 127: 1439-1452, 2006
91) Willemsen R, Oostra BA, Bassel GJ, Dictenberg J: The fragile X syndrome: from molecular genetics to neurobiology. Ment Retard Dev Disabil Res Rev 10: 60-67, 2004
92) Hand R, Bortone D, Mattar P, Nguyen L, Heng JI, et al: Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48: 45-62, 2005

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら