1) Nordstrom U, Jessell TM, Edlund T: Progressive induction of caudal neural character by graded Wnt signaling. Nat Neurosci 5: 525-532, 2002
2) Jessell TM: Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1: 20-29, 2000
3) Timmer JR, Wang C, Niswander L: BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors. Development 129: 2459-2472, 2002
4) Chesnutt C, Burrus LW, Brown AM, Niswander L: Coordinate regulation of neural tube patterning and proliferation by TGFbeta and WNT activity. Dev Biol 274: 334-347, 2004
5) Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, et al: Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 14: 357-360, 1996
6) Matsunaga E, Araki I, Nakamura H: Pax6 defines the di-mesencephalic boundary by repressing En1 and Pax2. Development 127: 2357-2365, 2000
7) Nakamura H: Regionalization of the optic tectum: combinations of gene expression that define the tectum. Trends Neurosci 24: 32-39, 2001
8) Pearson JC, Lemons D, Mcginnis W: Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6: 893-904, 2005
9) Arenkiel BR, Tvrdik P, Gaufo GO, Capecchi MR: Hoxb1 functions in both motoneurons and in tissues of the periphery to establish and maintain the proper neuronal circuitry. Genes Dev 18: 1539-1552, 2004
10) Cooke JE, Moens CB: Boundary formation in the hindbrain: Eph only it were simple. Trends Neurosci 25: 260-267, 2002
11) Pasini A, Wilkinson DG: Stabilizing the regionalisation of the developing vertebrate central nervous system. Bioessays 24: 427-438, 2002
12) Cowan CA, Henkemeyer M: Ephrins in reverse, park and drive. Trends Cell Biol 12: 339-346, 2002
13) Sur M, Rubenstein JL: Patterning and plasticity of the cerebral cortex. Science 310: 805-810, 2005
14) Assimacopoulos S, Grove EA, Ragsdale CW: Identification of a Pax6-dependent epidermal growth factor family signaling source at the lateral edge of the embryonic cerebral cortex. J Neurosci 23: 6399-6403, 2003
15) Schuurmans C, Guillemot F: Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr Opin Neurobiol 12: 26-34, 2002
16) Campbell K: Dorsal-ventral patterning in the mammalian telencephalon. Curr Opin Neurobiol 13: 50-56, 2003
17) Artavanis-Tsakonas S, Rand MD, Lake RJ: Notch signaling: cell fate control and signal integration in development. Science 284: 770-776, 1999
18) Fujita S: Analysis of Neuron Differentiation in the Central Nervous System by Tritiated Thymidine Autoradiography. J Comp Neurol 122: 311-327, 1964
19) Miyata T, Kawaguchi A, Okano H, Ogawa M: Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31: 727-741, 2001
20) Tamai H, Shinohara H, Miyata T, Saito K, Nishizawa Y, et al: Pax6 transcription factor is required for the interkinetic nuclear movement of neuroepithelial cells. Genes Cells 12: 983-996, 2007
21) Duparc RH, Abdouh M, David J, Lepine M, Tetreault N, et al: Pax6 controls the proliferation rate of neuroepithelial progenitors from the mouse optic vesicle. Dev Biol 301: 374-387, 2007
22) Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, et al: Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131: 3133-3145, 2004
23) Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR: Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7: 136-144, 2004
24) Reugels AM, Boggetti B, Scheer N, Campos-Ortega JA: Asymmetric localization of Numb: EGFP in dividing neuroepithelial cells during neurulation in Danio rerio. Dev Dyn 235: 934-948, 2006
25) Wakamatsu Y, Maynard TM, Jones SU, Weston JA: NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23: 71-81, 1999
26) Caric D, Gooday D, Hill RE, Mcconnell SK, Price DJ: Determination of the migratory capacity of embryonic cortical cells lacking the transcription factor Pax-6. Development 124: 5087-5096, 1997
27) Schmahl W, Knoedlseder M, Favor J, Davidson D: Defects of neuronal migration and the pathogenesis of cortical malformations are associated with Small eye (Sey) in the mouse, a point mutation at the Pax-6-locus. Acta Neuropathol (Berl) 86: 126-135, 1993
28) Arai Y, Funatsu N, Numayama-Tsuruta K, Nomura T, Nakamura S, et al: Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex. J Neurosci 25: 9752-9761, 2005
29) Shimoda Y, Tajima Y, Osanai T, Katsume A, Kohara M, et al: Pax6 controls the expression of Lewis x epitope in the embryonic forebrain by regulating alpha 1,3-fucosyltransferase IX expression. J Biol Chem 277: 2033-2039, 2002
30) Capela A, Temple S: LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35: 865-875, 2002
31) Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, et al: Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5: 308-315, 2002
32) Hack MA, Sugimori M, Lundberg C, Nakafuku M, Gotz M: Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol Cell Neurosci 25: 664-678, 2004
33) Scardigli R, Baumer N, Gruss P, Guillemot F, Le Roux I: Direct and concentration-dependent regulation of the proneural gene Neurogenin2 by Pax6. Development 130: 3269-3281, 2003
34) Bel-Vialar S, Medevielle F, Pituello F: The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord. Dev Biol 305: 659-673, 2007
35) Nakashima K, Yanagisawa M, Arakawa H, Taga T: Astrocyte differentiation mediated by LIF in cooperation with BMP2. FEBS Lett 457: 43-46, 1999
36) Zhou YH, Tan F, Hess KR, Yung WK: The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin Cancer Res 9: 3369-3375, 2003
37) Lee JC, Mayer-Proschel M, Rao MS: Gliogenesis in the central nervous system. Glia 30: 105-121, 2000
38) 中島欽一, 田賀哲也: 組織幹細胞-神経-幹細胞のグリア細胞への分化. 再生医学40: 10, 2003
39) 長谷川明子, 中平英子, 池中一裕: 神経発生と神経系のパターン形成-グリア細胞の発生分化. 実験医学20: 9, 2002
40) Fruttiger M, Karlsson L, Hall AC, Abramsson A, Calver AR, et al: Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126: 457-467, 1999
41) Baas D, Bourbeau D, Sarlieve LL, Ittel ME, Dussault JH, et al: Oligodendrocyte maturation and progenitor cell proliferation are independently regulated by thyroid hormone. Glia 19: 324-332, 1997
42) Tissir F, Goffinet AM: Reelin and brain development. Nat Rev Neurosci 4: 496-505, 2003
43) Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, et al: The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14: 899-912, 1995
44) Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, et al: Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26: 93-96, 2000
45) Brunelli S, Faiella A, Capra V, Nigro V, Simeone A, et al: Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat Genet 12: 94-96, 1996
46) Anderson S, Mione M, Yun K, Rubenstein JL: Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb Cortex 9: 646-654, 1999
47) Nomura T, Holmberg J, Frisen J, Osumi N: Pax6-dependent boundary defines alignment of migrating olfactory cortex neurons via the repulsive activity of ephrin A5. Development 133: 1335-1345, 2006
48) Hirata T, Nomura T, Takagi Y, Sato Y, Tomioka N, et al: Mosaic development of the olfactory cortex with Pax6-dependent and -independent components. Brain Res Dev Brain Res 136: 17-26, 2002
49) Cajal S: Degeneration & regeneration of the nervous system. Oxford University Press, Humphrey Milford, London, 1928
50) Alvarez-Buylla A, Theelen M, Nottebohm F: Birth of projection neurons in the higher vocal center of the canary forebrain before, during, and after song learning. Proc Natl Acad Sci U S A 85: 8722-8726, 1988
51) Taupin P, Gage FH: Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 69: 745-749, 2002
52) Van Praag H, Shubert T, Zhao C, Gage FH: Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25: 8680-8685, 2005
53) Kosaka K, Aika Y, Toida K, Heizmann CW, Hunziker W, et al: Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb. Neurosci Res 23: 73-88, 1995
54) Hack MA, Saghatelyan A, De Chevigny A, Pfeifer A, Ashery-Padan R, et al: Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8: 865-872, 2005
55) Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A: Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25: 6997-7003, 2005
56) Maekawa M, Takashima N, Arai Y, Nomura T, Inokuchi K, et al: Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 10: 1001-1014, 2005
57) Watanabe A, Toyota T, Owada Y, Hayashi T, Iwayama Y, et al: Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biol 5: e297, 2007
58) Swerdlow NR, Light GA, Cadenhead KS, Sprock J, Hsieh MH, et al: Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function. Arch Gen Psychiatry 63: 1325-1335, 2006
59) Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, et al: Neurogenesis in the adult is involved in the formation of trace memories. Nature 410: 372-376, 2001