文献詳細
増大特集 神経系の発生とその異常
文献概要
Ⅰ.導入(introduction)
哺乳類の大脳皮質の形成過程は,ニューロンの複雑かつ多様な相互作用を基盤としている。皮質構築における1つの重要なステップは,ニューロンの移動(neuronal migration)である。特定の部位で誕生したニューロンは,長い距離を移動して最終配置部位へと到達し,大脳皮質を構築する。
ニューロンの移動には,大別して2種類の様式がある。1つは,興奮性ニューロンによる放射状移動(radial migration)である。興奮性ニューロンは主に脳室帯および脳室下帯近辺で誕生し,辺縁帯直下まで放射状に移動する。他方は,抑制性ニューロンによる接線方向への移動(tangential migration)である。抑制性ニューロンは主に腹側の基底核原基で誕生し,脳表面に沿って平行に移動し,皮質板へと移入する。
精神遅滞やてんかん,自閉症などのさまざまな精神神経疾患の構造的基盤として,ニューロンの移動・配置機構の破綻が関わっている可能性が近年見出されてきた。すなわち,ニューロンの移動は組織構築のみならず,大脳の正常な機能発現にとっての基礎的現象でもある。本レビューでは,ニューロンの移動を軸として,大脳皮質構築のメカニズムを概観する。なお,関連する重要な原著論文は以下に示すもの以外にも多数あるが,紙数の関係でやむを得ず大幅に引用数を制限せざるを得ないことを,あらかじめお詫びしたい。
哺乳類の大脳皮質の形成過程は,ニューロンの複雑かつ多様な相互作用を基盤としている。皮質構築における1つの重要なステップは,ニューロンの移動(neuronal migration)である。特定の部位で誕生したニューロンは,長い距離を移動して最終配置部位へと到達し,大脳皮質を構築する。
ニューロンの移動には,大別して2種類の様式がある。1つは,興奮性ニューロンによる放射状移動(radial migration)である。興奮性ニューロンは主に脳室帯および脳室下帯近辺で誕生し,辺縁帯直下まで放射状に移動する。他方は,抑制性ニューロンによる接線方向への移動(tangential migration)である。抑制性ニューロンは主に腹側の基底核原基で誕生し,脳表面に沿って平行に移動し,皮質板へと移入する。
精神遅滞やてんかん,自閉症などのさまざまな精神神経疾患の構造的基盤として,ニューロンの移動・配置機構の破綻が関わっている可能性が近年見出されてきた。すなわち,ニューロンの移動は組織構築のみならず,大脳の正常な機能発現にとっての基礎的現象でもある。本レビューでは,ニューロンの移動を軸として,大脳皮質構築のメカニズムを概観する。なお,関連する重要な原著論文は以下に示すもの以外にも多数あるが,紙数の関係でやむを得ず大幅に引用数を制限せざるを得ないことを,あらかじめお詫びしたい。
参考文献
1) Takahashi T, Nowakowski RS, Caviness VS Jr: Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J Neurosci 15: 6058-6068, 1995
2) Pontious A, Kowalczyk T, Englund C, Hevner RF: Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 30: 24-32, 2008
3) Guillemot F, Molnar Z, Tarabykin V, Stoykova A: Molecular mechanisms of cortical differentiation. Eur J Neurosci 23: 857-868, 2006
4) Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL: Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4: 143-150, 2001
5) Miyata T, Ogawa M: Twisting of neocortical progenitor cells underlies a spring-like mechanism for daughter-cell migration. Curr Biol 17: 146-151, 2007
6) Rakic P: Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145: 61-83, 1972
7) Tabata H, Nakajima K: Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23: 9996-10001, 2003
8) Ohshima T, Hirasawa M, Tabata H, Mutoh T, Adachi T, et al: Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development 134: 2273-2282, 2007
9) D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, et al: A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374: 719-723, 1995
10) Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, et al: The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14: 899-912, 1995
11) Alcantara S, Ruiz M, D'Arcangelo G, Ezan F, de Lecea L, et al: Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18: 7779-7799, 1998
12) D'Arcangelo G: The reeler mouse: anatomy of a mutant. Int Rev Neurobiol 71: 383-417, 2005
13) Tabata H, Nakajima K: Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the Reelin signal-deficient mice. J Neurosci Res 69: 723-730, 2002
14) Pinto Lord MC, Caviness VS Jr: Determinants of cell shape and orientation: a comparative Golgi analysis of cell-axon interrelationships in the developing neocortex of normal and reeler mice. J Comp Neurol 187: 49-69, 1979
15) D'Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, et al: Reelin is a ligand for lipoprotein receptors. Neuron 24: 471-479, 1999
16) Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, et al: Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24: 481-489, 1999
17) Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, et al: Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27: 33-44, 2000
18) Magdaleno SM, Curran T: Brain development: integrins and the Reelin pathway. Curr Biol 11: R1032-R1035, 2001
19) Belvindrah R, Graus-Porta D, Goebbels S, Nave KA, Muller U: Beta1 integrins in radial glia but not in migrating neurons are essential for the formation of cell layers in the cerebral cortex. J Neurosci 27: 13854-13865, 2007
20) Sheldon M, Rice DS, D'Arcangelo G, Yoneshima H, Nakajima K, et al: Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389: 730-733, 1997
21) Howell BW, Hawkes R, Soriano P, Cooper JA: Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389: 733-737, 1997
22) Yoneshima H, Nagata E, Matsumoto M, Yamada M, Nakajima K, et al: A novel neurological mutant mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen/reelin. Neurosci Res 29: 217-223, 1997
23) Kojima T, Nakajima K, Mikoshiba K: The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. Brain Res Mol Brain Res 75: 121-127, 2000
24) Del Rio JA, Heimrich B, Borrell V, Forster E, Drakew A, et al: A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385: 70-74, 1997
25) Miyata T, Nakajima K, Mikoshiba K, Ogawa M: Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J Neurosci 17: 3599-3609, 1997
26) Nakajima K, Mikoshiba K, Miyata T, Kudo C, Ogawa M: Disruption of hippocampal development in vivo by CR-50 mAb against reelin. Proc Natl Acad Sci U S A 94: 8196-8201, 1997
27) Borrell V, Del Rio JA, Alcantara S, Derer M, Martinez A, et al: Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J Neurosci 19: 1345-1358, 1999
28) D'Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, et al: Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17: 23-31, 1997
29) Jossin Y, Ignatova N, Hiesberger T, Herz J, Lambert de Rouvroit C, et al: The central fragment of Reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development. J Neurosci 24: 514-521, 2004
30) Nakano Y, Kohno T, Hibi T, Kohno S, Baba A, et al: The extremely conserved C-terminal region of Reelin is not necessary for secretion but is required for efficient activation of downstream signaling. J Biol Chem 282: 20544-20552, 2007
). Brain Res Mol Brain Res 50: 85-90, 1997
32) Jossin Y, Gui L, Goffinet AM: Processing of Reelin by embryonic neurons is important for function in tissue but not in dissociated cultured neurons. J Neurosci 27: 4243-4252, 2007
33) Utsunomiya-Tate N, Kubo K, Tate S, Kainosho M, Katayama E, et al: Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc Natl Acad Sci U S A 97: 9729-9734, 2000
34) Kubo K, Mikoshiba K, Nakajima K: Secreted Reelin molecules form homodimers. Neurosci Res 43: 381-388, 2002
35) Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, et al: Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97: 689-701, 1999
36) Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, et al: Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons. Development 134: 3883-3891, 2007
37) Zhang G, Assadi AH, McNeil RS, Beffert U, Wynshaw-Boris A, et al: The Pafah1b complex interacts with the Reelin receptor VLDLR. PLoS ONE 2: e252, 2007
38) Stockinger W, Brandes C, Fasching D, Hermann M, Gotthardt M, et al: The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and -2. J Biol Chem 275: 25625-25632, 2000
39) Homayouni R, Magdaleno S, Keshvara L, Rice DS, Curran T: Interaction of Disabled-1 and the GTPase activating protein Dab2IP in mouse brain. Brain Res Mol Brain Res 115: 121-129, 2003
40) Yamashita N, Uchida Y, Ohshima T, Hirai S, Nakamura F, et al: Collapsin response mediator protein 1 mediates reelin signaling in cortical neuronal migration. J Neurosci 26: 13357-13362, 2006
41) Simo S, Pujadas L, Segura MF, La Torre A, Del Rio JA, et al: Reelin induces the detachment of postnatal subventricular zone cells and the expression of the Egr-1 through Erk1/2 activation. Cereb Cortex 17: 294-303, 2007
42) Kubo K, Nakajima K: Cell and molecular mechanisms that control cortical layer formation in the brain. Keio J Med 52: 8-20, 2003
43) Honda T, Tabata H, Nakajima K: Cellular and molecular mechanisms of neuronal migration in neocortical development. Semin Cell Dev Biol 14: 169-174, 2003
44) Forster E, Jossin Y, Zhao S, Chai X, Frotscher M, et al: Recent progress in understanding the role of Reelin in radial neuronal migration, with specific emphasis on the dentate gyrus. Eur J Neurosci 23: 901-909, 2006
45) Honda T, Nakajima K: Mouse Disabled1 (DAB1) is a nucleocytoplasmic shuttling protein. J Biol Chem 281: 38951-38965, 2006
46) Magdaleno S, Keshvara L, Curran T: Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron 33: 573-586, 2002
47) Hammond V, Howell B, Godinho L, Tan SS: Disabled-1 functions cell autonomously during radial migration and cortical layering of pyramidal neurons. J Neurosci 21: 8798-8808, 2001
48) Hartfuss E, Forster E, Bock HH, Hack MA, Leprince P, et al: Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130: 4597-4609, 2003
49) Borrell V, Pujadas L, Simo S, Dura D, Sole M, et al: Reelin and mDab1 regulate the development of hippocampal connections. Mol Cell Neurosci 36: 158-173, 2007
50) Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, et al: NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci 27: 10165-10175, 2007
51) Wonders CP, Anderson SA: The origin and specification of cortical interneurons. Nat Rev Neurosci 7: 687-696, 2006
52) Nakajima K: Control of tangential/non-radial migration of neurons in the developing cerebral cortex. Neurochem Int 51: 121-131, 2007
53) Glickstein SB, Moore H, Slowinska B, Racchumi J, Suh M, et al: Selective cortical interneuron and GABA deficits in cyclin D2-null mice. Development 134: 4083-4093, 2007
54) Yozu M, Tabata H, Nakajima K: The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci 25: 7268-7277, 2005
55) Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, et al: Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133: 2243-2252, 2006
56) Marin O, Yaron A, Bagri A, Tessier-Lavigne M, Rubenstein JL: Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 293: 872-875, 2001
57) Flames N, Long JE, Garratt AN, Fischer TM, Gassmann M, et al: Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44: 251-261, 2004
58) Lopez-Bendito G, Cautinat A, Sanchez JA, Bielle F, Flames N, et al: Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125: 127-142, 2006
59) Cuzon VC, Yeh PW, Cheng Q, Yeh HH: Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. Cereb Cortex 16: 1377-1388, 2006
60) Lopez-Bendito G, Lujan R, Shigemoto R, Ganter P, Paulsen O, et al: Blockade of GABA(B) receptors alters the tangential migration of cortical neurons. Cereb Cortex 13: 932-942, 2003
61) Stumm R, Kolodziej A, Schulz S, Kohtz JD, Hollt V: Patterns of SDF-1alpha and SDF-1gamma mRNAs, migration pathways, and phenotypes of CXCR4-expressing neurons in the developing rat telencephalon. J Comp Neurol 502: 382-399, 2007
62) Tamamaki N, Fujimori K, Nojyo Y, Kaneko T, Takauji R: Evidence that Sema3A and Sema3F regu-late the migration of GABAergic neurons in the devel-oping neocortex. J Comp Neurol 455: 238-248, 2003
63) Yozu M, Tabata H, Nakajima K: Birth-date dependent alignment of GABAergic neurons occurs in a different pattern from that of non-GABAergic neurons in the developing mouse visual cortex. Neurosci Res 49: 395-403, 2004
64) Tiveron MC, Rossel M, Moepps B, Zhang YL, Seidenfaden R, et al: Molecular interaction between projection neuron precursors and invading interneurons via stromal-derived factor 1 (CXCL12)/CXCR4 signaling in the cortical subventricular zone/intermediate zone. J Neurosci 26: 13273-13278, 2006
65) Yozu M, Tabata H, Konig N, Nakajima K: Migratory behavior of presumptive interneurons is affected by AMPA receptor activation in slice cultures of embryonic mouse neocortex. Dev Neurosci 30: 105-116, 2008
66) Alcantara S, Pozas E, Ibanez CF, Soriano E: BDNF-modulated spatial organization of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the development of cortical organization. Cereb Cortex 16: 487-499, 2006
67) Tabata H, Nakajima K: Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103: 865-872, 2001
掲載誌情報