1) Tessier-Lavigne M, Goodman CS: The molecular biology of axon guidance. Science 274: 1123-1133, 1996
2) Shirasaki R, Katsumata R, Murakami F: Change in chemoattractant responsiveness of developing axons at an intermediate target. Science 279: 105-107, 1998
3) Shirasaki R, Murakami F: Crossing the floor plate triggers sharp turning of commissural axons. Dev Biol 236: 99-108, 2001
4) Taniguchi H, Tamada A, Kennedy TE, Murakami F: Crossing the ventral midline causes neurons to change their response to floor plate and alar plate attractive cues during transmedian migration. Dev Biol 249: 321-332, 2002
5) Brose K, Tessier-Lavigne M: Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr Opin Neurobiol 10: 95-102, 2000
6) Park HT, Wu J, Rao Y: Molecular control of neuronal migration. Bioessays 24: 821-827, 2002
7) Tamagnone L, Comoglio PM: To move or not to move? Semaphorin signalling in cell migration. EMBO Rep 5: 356-361, 2004
8) Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, et al: The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78: 409-424, 1994
9) Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M: Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78: 425-435, 1994
10) Huber AB, Kolodkin AL, Ginty DD, Cloutier JF: Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26: 509-563, 2003
11) Dickson BJ: Molecular mechanisms of axon guidance. Science 298: 1959-1964, 2002
12) Culotti JG, Merz DC: DCC and netrins. Curr Opin Cell Biol 10: 609-613, 1998
13) Yee KT, Simon HH, Tessier-Lavigne M, O'Leary DM: Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24: 607-622, 1999
14) Alcantara S, Ruiz M, De Castro F, Soriano E, Sotelo C: Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development 127: 1359-1372, 2000
15) Hamasaki T, Goto S, Nishikawa S, Ushio Y: A role of netrin-1 in the formation of the subcortical structure striatum: repulsive action on the migration of late-born striatal neurons. J Neurosci 21: 4272-4280, 2001
16) Colamarino SA, Tessier-Lavigne M: The role of the floor plate in axon guidance. Annu Rev Neurosci 18: 497-529, 1995
17) Murakami F, Shirasaki R: Guidance of circumferentially growing axons by the floor plate in the vertebrate central nervous system. Cell Tissue Res 290: 323-330, 1997
18) Colamarino SA, Tessier-Lavigne M: The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81: 621-629, 1995
19) Burgess RW, Jucius TJ, Ackerman SL: Motor axon guidance of the mammalian trochlear and phrenic nerves: dependence on the netrin receptor Unc5c and modifier loci. J Neurosci 26: 5756-5766, 2006
20) Watanabe K, Tamamaki N, Furuta T, Ackerman SL, Ikenaka K, et al: Dorsally derived netrin 1 provides an inhibitory cue and elaborates the ‘waiting period' for primary sensory axons in the developing spinal cord. Development 133: 1379-1387, 2006
21) Nusslein-Volhard C, Wieschaus E, Kluding H: Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Roux's Arch Dev Biol 193: 267-282, 1984
22) Seeger M, Tear G, Ferres-Marco D, Goodman CS: Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10: 409-426, 1993
23) Li HS, Chen JH, Wu W, Fagaly T, Zhou L, et al: Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96: 807-818, 1999
24) Wu W, Wong K, Chen J, Jiang Z, Dupuis S, et al: Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400: 331-336, 1999
25) Hu H: Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 23: 703-711, 1999
26) Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, et al: New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311: 629-632, 2006
27) Zhu Y, Li H, Zhou L, Wu JY, Rao Y: Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 23: 473-485, 1999
28) Marin O, Plump AS, Flames N, Sanchez-Camacho C, Tessier-Lavigne M, et al: Directional guidance of interneuron migration to the cerebral cortex relies on subcortical Slit1/2-independent repulsion and cortical attraction. Development 130: 1889-1901, 2003
29) Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M: Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Cell 102: 363-375, 2000
30) Long H, Sabatier C, Ma L, Plump A, Yuan W, et al: Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 42: 213-223, 2004
31) Plump AS, Erskine L, Sabatier C, Brose K, Epstein CJ, et al: Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33: 219-232, 2002
32) Bagri A, Marin O, Plump AS, Mak J, Pleasure SJ, et al: Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33: 233-248, 2002
33) Nguyen-Ba-Charvet KT, Plump AS, Tessier-Lavigne M, Chedotal A: Slit1 and slit2 proteins control the development of the lateral olfactory tract. J Neurosci 22: 5473-5480, 2002
34) Hammond R, Vivancos V, Naeem A, Chilton J, Mambetisaeva E, et al: Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain. Development 132: 4483-4495, 2005
35) Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, et al: Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133: 2243-2252, 2006
36) Lopez-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, et al: Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci 27: 3395-3407, 2007
37) Fouquet C, Di Meglio T, Ma L, Kawasaki T, Long H, et al: Robo1 and robo2 control the development of the lateral olfactory tract. J Neurosci 27: 3037-3045, 2007
38) Sabatier C, Plump AS, Le Ma, Brose K, Tamada A, et al: The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117: 157-169, 2004
39) Marillat V, Sabatier C, Failli V, Matsunaga E, Sotelo C, et al: The slit receptor Rig-1/Robo3 controls midline crossing by hindbrain precerebellar neurons and axons. Neuron 43: 69-79, 2004
40) Luo Y, Raible D, Raper JA: Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75: 217-227, 1993
41) Pasterkamp RJ, Kolodkin AL: Semaphorin junction: making tracks toward neural connectivity. Curr Opin Neurobiol 13: 79-89, 2003
42) Semaphorin Nomenclature Committee: Unified nomenclature for the semaphorins/collapsins. Cell 97: 551-552, 1999
43) Fujisawa H: Discovery of semaphorin receptors, neuropilin and plexin, and their functions in neural development. J Neurobiol 59: 24-33, 2004
44) Gu C, Yoshida Y, Livet J, Reimert DV, Mann F, et al: Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307: 265-268, 2005
45) Castellani V, Chedotal A, Schachner M, Faivre-Sarrailh C, Rougon G: Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 27: 237-249, 2000
46) Falk J, Bechara A, Fiore R, Nawabi H, Zhou H, et al: Dual functional activity of semaphorin 3B is required for positioning the anterior commissure. Neuron 48: 63-75, 2005
47) Swiercz JM, Kuner R, Offermanns S: Plexin-B1/RhoGEF-mediated RhoA activation involves the receptor tyrosine kinase ErbB-2. J Cell Biol 165: 869-880, 2004
48) Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL: Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424: 398-405, 2003
49) Marin O, Yaron A, Bagri A, Tessier-Lavigne M, Rubenstein JL: Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 293: 872-875, 2001
50) Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, et al: Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44: 961-975, 2004
51) Suto F, Tsuboi M, Kamiya H, Mizuno H, Kiyama Y, et al: Interactions between Plexin-A2, Plexin-A4, and Semaphorin 6A Control Lamina-Restricted Projection of Hippocampal Mossy Fibers. Neuron 53: 535-547, 2007
52) Taniguchi M, Yuasa S, Fujisawa H, Naruse I, Saga S, et al: Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 19: 519-530, 1997
53) Kitsukawa T, Shimizu M, Sanbo M, Hirata T, Taniguchi M, et al: Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19: 995-1005, 1997
54) Giger RJ, Cloutier JF, Sahay A, Prinjha RK, Levengood DV, et al: Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 25: 29-41, 2000
55) Chen H, Bagri A, Zupicich JA, Zou Y, Stoeckli E, et al: Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25: 43-56, 2000
56) Sahay A, Molliver ME, Ginty DD, Kolodkin AL: Semaphorin 3F is critical for development of limbic system circuitry and is required in neurons for selective CNS axon guidance events. J Neurosci 23: 6671-6680, 2003
57) Bartley TD, Hunt RW, Welcher AA, Boyle WJ, et al: B61 is a ligand for the ECK receptor protein-tyrosine kinase. Nature 368: 558-560, 1994
58) Hirai H, Maru Y, Hagiwara K, Nishida J, et al: A novel putative tyrosine kinase receptor encoded by the eph gene. Science 238: 1717-1720, 1987
59) Murai KK, Pasquale EB: ‘Eph' ective signaling: forward, reverse and crosstalk. J Cell Sci 116: 2823-2832, 2003
60) Nomura T, Holmberg J, Frisen J, Osumi N: Pax6-dependent boundary defines alignment of migrating olfactory cortex neurons via the repulsive activity of ephrin A5. Development 133: 1335-1345, 2006
61) Flanagan JG, Vanderhaeghen P: The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21: 309-345, 1998
62) McLaughlin T, O'Leary DD: Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28: 327-355, 2005
63) Knoll B, Zarbalis K, Wurst W, Drescher U: A role for the EphA family in the topographic targeting of vomeronasal axons. Development 128: 895-906, 2001
64) Hansen MJ, Dallal GE, Flanagan JG: Retinal axon response to ephrin-as shows a graded, concentration-dependent transition from growth promotion to inhibition. Neuron 42: 717-730, 2004
65) Marquardt T, Shirasaki R, Ghosh S, Andrews SE, Carter N, et al: Coexpressed EphA receptors and ephrin-A ligands mediate opposing actions on growth cone navigation from distinct membrane domains. Cell 121: 127-139, 2005
66) Yokoyama N, Romero MI, Cowan CA, Galvan P, Helmbacher F, et al: Forward signaling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron 29: 85-97, 2001
67) Kullander K, Croll SD, Zimmer M, Pan L, McClain J, et al: Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev 15: 877-888, 2001
68) Cowan CA, Yokoyama N, Saxena A, Chumley MJ, Silvany RE, et al: Ephrin-B2 reverse signaling is required for axon pathfinding and cardiac valve formation but not early vascular development. Dev Biol 271: 263-271, 2004
69) Zhu Y, Yu T, Zhang XC, Nagasawa T, Wu JY, et al: Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci 5: 719-720, 2002
70) Borrell V, Marin O: Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat Neurosci 9: 1284-1293, 2006
71) Flames N, Long JE, Garratt AN, Fischer TM, Gassmann M, et al: Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44: 251-261, 2004
72) Lopez-Bendito G, Cautinat A, Sanchez JA, Bielle F, Flames N, et al: Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125: 127-142, 2006
73) Charron F, Tessier-Lavigne M: Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development 132: 2251-2262, 2005
74) Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M: The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113: 11-23, 2003
75) Augsburger A, Schuchardt A, Hoskins S, Dodd J, Butler S: BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24: 127-141, 1999
76) Butler SJ, Dodd J: A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38: 389-401, 2003
77) Bovolenta P, Dodd J: Perturbation of neuronal differentiation and axon guidance in the spinal cord of mouse embryos lacking a floor plate: analysis of Danforth's short-tail mutation. Development 113: 625-639, 1991
78) Matise MP, Lustig M, Sakurai T, Grumet M, Joyner AL: Ventral midline cells are required for the local control of commissural axon guidance in the mouse spinal cord. Development 126: 3649-3659, 1999
79) Brankatschk M, Dickson BJ: Netrins guide Drosophila commissural axons at short range. Nat Neurosci 9: 188-194, 2006
80) Brose K, Bland KS, Wang KH, Arnott D, Henzel W, et al: Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96: 795-806, 1999
81) Tanaka DH, Yanagida M, Yamasaki E, Zhu Y, Mikami S, et al: CXCR4-dependent "wandering period" of migrating cortical interneurons. Neurosci Res 58S: S38 (OP1-D09), 2007