icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩61巻12号

2009年12月発行

特集 Somatotopy再考

大脳基底核のsomatotopy

著者: 南部篤1

所属機関: 1自然科学研究機構生理学研究所生体システム研究部門

ページ範囲:P.1383 - P.1394

文献概要

はじめに

 身体の各部位と脳の領域が対応しているというsomatotopyは,脳機能研究において基本的かつ重要な概念である。各領域のsomatotopyを調べることは,機能を調べる手がかりとなると同時に,実際の実験において必須の知識である。また,疾患時においてsomatotopyが変化することも報告されている。本稿では大脳基底核のsomatotopyを紹介することを通して,大脳基底核の機能について考えてみたい。研究が進んでいるサルを中心に述べるが,ヒトの所見とは矛盾しないので,ヒトでも同様と考えられる。

 感覚野では,例えば視覚野に代表されるように,一次野から高次領野に至るにしたがって情報処理が進み,受容野が大きくなる一方で,色,形などほかの神経情報がコードされるようになる。しかし,運動皮質では,それぞれ特徴的な活動はあるものの,高次領野でも基本的なsomatotopyが保たれている。この意味するところは,抽象的な運動というものが存在し,それらが順に関節や筋肉の運動にデコードされ実際の運動が起こる訳ではないということであろう。以下に述べるように,大脳基底核を構成する核においても,それぞれsomatotopyが存在するので,大脳基底核の回路の中で身体各部位の情報は独立して処理されていると考えられる。

参考文献

1) Alexander GE, Crutcher MD: Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266-271, 1990
2) Nambu A, Tokuno H, Takada M: Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect' pathway. Neurosci Res 43: 111-117, 2002
3) Parent A, Hazrati LN: Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20: 91-127, 1995
4) Parent A: Extrinsic connections of the basal ganglia. Trends Neurosci 13: 254-258, 1990
5) Alexander GE, DeLong MR, Strick PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357-381, 1986
6) Takada M, Tokuno H, Nambu A, Inase M: Corticostriatal projections from the somatic motor areas of the frontal cortex in the macaque monkey: segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the premotor cortex. Exp Brain Res 120: 114-128, 1998
7) Tokuno H, Inase M, Nambu A, Akazawa T, Miyachi S, et al: Corticostriatal projections from distal and proximal forelimb representations of the monkey primary motor cortex. Neurosci Lett 269: 33-36, 1999
8) Miyachi S, Lu X, Imanishi M, Sawada K, Nambu A, et al: Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex. Neurosci Res 56: 300-308, 2006
9) Jones EG: The Thalamus 2nd ed. Cambridge University Press, New York, 2007
10) Nambu A, Kaneda K, Tokuno H, Takada M: Organization of corticostriatal motor inputs in monkey putamen. J Neurophysiol 88: 1830-1842, 2002
11) Alexander GE, DeLong MR: Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. J Neurophysiol 53: 1417-1430, 1985
12) Aosaki T, Kimura M, Graybiel AM: Temporal and spatial characteristics of tonically active neurons of the primate's striatum. J Neurophysiol 73: 1234-1252, 1995
13) Inase M, Tokuno H, Nambu A, Akazawa T, Takada M: Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833: 191-201, 1999
14) Takada M, Tokuno H, Nambu A, Inase M: Corticostriatal input zones from the supplementary motor area overlap those from the contra- rather than ipsilateral primary motor cortex. Brain Res 791: 335-340, 1998
15) Takada M, Tokuno H, Hamada I, Inase M, Ito Y, et al: Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci 14: 1633-1650, 2001
16) Tachibana Y, Nambu A, Hatanaka N, Miyachi S, Takada M: Input-output organization of the rostral part of the dorsal premotor cortex, with special reference to its corticostriatal projection. Neurosci Res 48: 45-57, 2004
17) Flaherty AW, Graybiel AM: Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey. J Neurosci 13: 1120-1137, 1993
18) Selemon LD, Goldman-Rakic PS: Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5: 776-794, 1985
19) Haber SN, Lynd E, Klein C, Groenewegen HJ: Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293: 282-298, 1990
20) Hikosaka O, Sakamoto M, Usui S: Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 61: 780-798, 1989
21) Nambu A, Takada M, Inase M, Tokuno H: Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16: 2671-2683, 1996
22) Nambu A, Tokuno H, Inase M, Takada M: Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239: 13-16, 1997
23) Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, et al: Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84: 289-300, 2000
24) DeLong MR, Crutcher MD, Georgopoulos AP: Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53: 530-543, 1985
25) Wichmann T, Bergman H, DeLong MR: The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiol 72: 494-506, 1994
26) Monakow KH, Akert K, Kunzle H: Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33: 395-403, 1978
27) Matsumura M, Kojima J, Gardiner TW, Hikosaka O: Visual and oculomotor functions of monkey subthalamic nucleus. J Neurophysiol 67: 1615-1632, 1992
28) Smith Y, Parent A: Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 18: 347-371, 1986
29) Kita H, Nambu A, Kaneda K, Tachibana Y, Takada M: Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. J Neurophysiol 92: 3069-3084, 2004
30) Tachibana Y, Kita H, Chiken S, Takada M, Nambu A: Motor cortical control of internal pallidal activity through glutamatergic and GABAergic inputs in awake monkeys. Eur J Neurosci 27: 238-253, 2008
31) Yoshida S, Nambu A, Jinnai K: The distribution of the globus pallidus neurons with input from various cortical areas in the monkeys. Brain Res 611: 170-174, 1993
32) Kaneda K, Nambu A, Tokuno H, Takada M: Differential processing patterns of motor information via striatopallidal and striatonigral projections. J Neurophysiol 88: 1420-1432, 2002
33) Hoover JE, Strick PL: Multiple output channels in the basal ganglia. Science 259: 819-821, 1993
34) Hoover JE, Strick PL: The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19: 1446-1463, 1999
35) Strick PL, Dum RP, Picard N: Macro-organization of the circuits connecting the basal ganglia with the cortical motor areas. In, Models of Information Processing in the Basal Ganglia (Houck JC, Davis JL, Beiser DG), MIT Press, Cambridge, 1995, pp117-130
36) Akkal D, Dum RP, Strick PL: Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27: 10659-10673, 2007
37) Yelnik J, Percheron G, Francois C: A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations. J Comp Neurol 227: 200-213, 1984
38) Percheron G, Yelnik J, Francois C: A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227: 214-227, 1984
39) DeLong MR: Activity of pallidal neurons during movement. J Neurophysiol 34: 414-427, 1971
40) Georgopoulos AP, DeLong MR, Crutcher MD: Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J Neurosci 3: 1586-1598, 1983
41) Nambu A, Yoshida S, Jinnai K: Discharge patterns of pallidal neurons with input from various cortical areas during movement in the monkey. Brain Res 519: 183-191, 1990
42) Kitano H, Tanibuchi I, Jinnai K: The distribution of neurons in the substantia nigra pars reticulata with input from the motor, premotor and prefrontal areas of the cerebral cortex in monkeys. Brain Res 784: 228-238, 1998
43) DeLong MR, Crutcher MD, Georgopoulos AP: Relations between movement and single cell discharge in the substantia nigra of the behaving monkey. J Neurosci 3: 1599-1606, 1983
44) Wichmann T, Kliem MA: Neuronal activity in the primate substantia nigra pars reticulata during the performance of simple and memory-guided elbow movements. J Neurophysiol 91: 815-827, 2004
45) Hikosaka O, Wurtz RH: Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J Neurophysiol 49: 1230-1253, 1983
46) Parent A, Mackey A, De Bellefeuille L: The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neuroscience 10: 1137-1150, 1983
47) Schultz W, Romo R: Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. J Neurophysiol 63: 607-624, 1990
48) Holsapple JW, Preston JB, Strick PL: The origin of thalamic inputs to the "hand" representation in the primary motor cortex. J Neurosci 11: 2644-2654, 1991
49) Asanuma C, Thach WR, Jones EG: Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res 286: 267-297, 1983
50) Vitek JL, Ashe J, DeLong MR, Alexander GE: Physiologic properties and somatotopic organization of the primate motor thalamus. J Neurophysiol 71: 1498-1513, 1994
51) Anderson ME, Turner RS: Activity of neurons in cerebellar-receiving and pallidal-receiving areas of the thalamus of the behaving monkey. J Neurophysiol 66: 879-893, 1991
52) Nambu A, Yoshida S, Jinnai K: Movement-related activity of thalamic neurons with input from the globus pallidus and projection to the motor cortex in the monkey. Exp Brain Res 84: 279-284, 1991
53) Vitek JL, Ashe J, DeLong MR, Kaneoke Y: Microstimulation of primate motor thalamus: somatotopic organization and differential distribution of evoked motor responses among subnuclei. J Neurophysiol 75: 2486-2495, 1996
54) Buford JA, Inase M, Anderson ME: Contrasting locations of pallidal-receiving neurons and microexcitable zones in primate thalamus. J Neurophysiol 75: 1105-1116, 1996
55) Haber SN, Fudge JL, McFarland NR: Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20: 2369-2382, 2000
56) Filion M, Tremblay L, Bedard PJ: Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444: 165-176, 1988
57) Bergman H, Feingold A, Nini A, Raz A, Slovin H, et al: Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 21: 32-38, 1998
58) Vitek JL, Chockkan V, Zhang JY, Kaneoke Y, Evatt M, et al: Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol 46: 22-35, 1999
59) Chiken S, Shashidharan P, Nambu A: Cortically evoked long-lasting inhibition of pallidal neurons in a transgenic mouse model of dystonia. J Neurosci 28: 13967-13977, 2008

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら