icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩61巻4号

2009年04月発行

特集 大脳基底核―分子基盤から臨床まで

大脳基底核の構造―細胞構築と神経回路

著者: 藤山文乃1

所属機関: 1京都大学大学院医学研究科高次脳形態学教室

ページ範囲:P.341 - P.349

文献概要

はじめに

 大脳基底核は小脳とともに錐体路の運動系を修飾し,運動をスムーズに遂行するための大脳核である。また,パーキンソン病やハンチントン病など働き盛りの年代の身体的社会的活動を奪う難治性疾患の病変部位でもあり,この領域のネットワークの解明は社会的にも大きな問題である。さらに最近では黒質-線条体のドーパミン系を中心に,報酬系や強化学習などの新たな機能的側面も注目されている。しかしこの領域には,直接路・間接路投射系,およびストリオソーム・マトリックス構造という2つの概念が共存しており,ネットワークの明確な理解を現在もなお困難にしている。この章では,新しい知見もふまえ大脳基底核の構造を解説する。

参考文献

1) Alexander GE, Crutcher MD: Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266-271, 1990
2) Middleton FA, Strick PL: Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31: 236-250, 2000
3) Parent A, Hazrati LN: Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20: 128-154, 1995
4) Parent A, Hazrati LN: Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20: 91-127, 1995
5) Alexander GE, DeLong MR, Strick PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357-381, 1986
6) Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL: The cerebellum communicates with the basal ganglia. Nat Neurosci 8: 1491-1493, 2005
7) Bolam JP, Moss J: A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28: 11221-11230, 2008
8) 藤山文乃: 線条体. 脳神経科学イラストレイテッド, 改訂第2版, 羊土社, 東京, 2006
9) Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, et al: Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci 362: 1573-1583, 2007
10) Tunstall MJ, Oorschot DE, Kean A, Wickens JR: Inhibitory interactions between spiny projection neurons in the rat striatum. J Neurophysiol 88: 1263-1269, 2002
11) Fujiyama F, Fritschy JM, Stephenson FA, Bolam JP: Synaptic localization of GABA (A) receptor subunits in the striatum of the rat. J Comp Neurol 416: 158-172, 2000
12) Aosaki T, Graybiel AM, Kimura M: Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science 265: 412-415, 1994
13) Lapper SR, Bolam JP: Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51: 533-545, 1992
14) Matsumoto N, Minamimoto T, Graybiel AM, Kimura M: Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol 85: 960-976, 2001
15) Kawaguchi Y, Wilson CJ, Emson PC: Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10: 3421-3438, 1990
16) Levesque M, Parent A: The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci U S A 102: 11888-11893, 2005
17) Lei W, Jiao Y, Del Mar N, Reiner A: Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosc 24: 8289-8299, 2004
18) Morishima M, Kawaguchi Y: Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J Neurosci 26: 4394-4405, 2006
19) Sidibe M, Smith Y: Differential synaptic innervation of striatofugal neurones projecting to the internal or external segments of the globus pallidus by thalamic afferents in the squirrel monkey. J Comp Neurol 365: 445-465, 1996
20) Johnston JG, Gerfen CR, Haber SN, van der Kooy D: Mechanisms of striatal pattern formation: conservation of mammalian compartmentalization. Brain Res Dev Brain Res 57: 93-102, 1990
21) Graybiel AM: Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13: 244-254, 1990
22) Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, et al: Single nigrostriatal dopaminergic neurons form widely spread and highly deuse axonal arborizations in the neostriatum. J Neurosci 29: 444-453, 2009
23) Kincaid AE, Wilson CJ: Corticostriatal innervation of the patch and matrix in the rat neostriatum. J Comp Neurol 374: 578-592, 1996
24) Ragsdale CW, Jr., Graybiel AM: Compartmental organization of the thalamostriatal connection in the cat. J Comp Neurol 311: 134-167, 1991
25) Fujiyama F, Unzai T, Nakamura K, Nomura S, Kaneko T: Difference in organization of corticostriatal and thalamostriatal synapses between patch and matrix compartments of rat neostriatum. Eur J Neurosci 24: 2813-2824, 2006
26) Koshimizu Y, Wu SX, Unzai T, Hioki H, Sonomura T, Nakamura KC, et al: Paucity of enkephalin production in neostriatal striosomal neurons: analysis with preproenkephalin/green fluorescent protein transgenic mice. Eur J Neurosci 28: 2053-2064, 2008
27) Canales JJ: Stimulant-induced adaptations in neostriatal matrix and striosome systems: transiting from instrumental responding to habitual behavior in drug addiction. Neurobiol Learn Mem 83: 93-103, 2005
28) Goto Y, Grace AA: Limbic and cortical information processing in the nucleus accumbens. Trends Neurosci 31: 552-558, 2008
29) Nambu A, Tokuno H, Inase M, Takada M: Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239: 13-16, 1997
30) Inase M, Tokuno H, Nambu A, Akazawa T, Takada M: Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833: 191-201, 1999
31) Takada M, Tokuno H, Hamada I, Inase M, Ito Y, et al: Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci 14: 1633-1650, 2001
32) Nambu A, Tokuno H, Takada M: Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect' pathway. Neurosci Res 43: 111-117, 2002
33) Kita H, Kitai ST: Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260: 435-452, 1987
34) Sato F, Parent M, Levesque M, Parent A: Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424: 142-152, 2000
35) Kita H, Kitai ST: The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain Res 636: 308-319, 1994
36) Sato F, Lavallee P, Levesque M, Parent A: Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417: 17-31, 2000
37) Sadek AR, Magill PJ, Bolam JP: A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J Neurosci 27: 6352-6362, 2007
38) Levy R, Hutchison WD, Lozano AM, Dostrovsky JO: High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci 20: 7766-7775, 2000
39) Raz A, Vaadia E, Bergman H: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of parkinsonism. J Neurosci 20: 8559-8571, 2000
40) Brown P, Oliviero A, Mazzone P, Insola A, Tonali P et al: Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. J Neurosci 21: 1033-1038, 2001
41) Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ: Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 25: 525-531, 2002
42) Surmeier DJ, Mercer JN, Chan CS: Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? Curr Opin Neurobiol 15: 312-318, 2005
43) Isoda M, Hikosaka O: Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J Neurosci 28: 7209-7218, 2008
44) Plenz D, Herrera-Marschitz M, Kitai ST: Morphological organization of the globus pallidus-subthalamic nucleus system studied in organotypic cultures. J Comp Neurol 397: 437-457, 1998
45) Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M: Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 50: 137-151, 2004
46) Kitai ST, Shepard PD, Callaway JC, Scroggs R: Afferent modulation of dopamine neuron firing patterns. Curr Opin Neurobiol 9: 690-697, 1999
47) Mena-Segovia J, Bolam JP, Magill PJ: Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 27: 585-588, 2004
48) Hikosaka O, Takikawa Y, Kawagoe R: Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80: 953-978, 2000

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら