文献詳細
特集 大脳基底核―分子基盤から臨床まで
文献概要
はじめに
大脳基底核は,パーキンソン病,ハンチントン舞踏病などの神経疾患の責任部位であるほか,強化学習,手続き学習などの認知機能にも深く関わっていることが示唆されている。解剖学的には,基底核が大脳皮質,視床を含む平行ループ回路を形成していることがさまざまな研究から指摘され,これが基底核の機能の基盤であるとされている。しかし,近年の研究により,異なる平行ループ間を結ぶ神経連絡も無視できないことが指摘されてきている。本稿では,皮質-基底核回路の異なるループ(あるいは機能ドメイン)間を結ぶ神経連絡に焦点を当てて,今日までの解剖学的な研究を概観する。
大脳基底核は,パーキンソン病,ハンチントン舞踏病などの神経疾患の責任部位であるほか,強化学習,手続き学習などの認知機能にも深く関わっていることが示唆されている。解剖学的には,基底核が大脳皮質,視床を含む平行ループ回路を形成していることがさまざまな研究から指摘され,これが基底核の機能の基盤であるとされている。しかし,近年の研究により,異なる平行ループ間を結ぶ神経連絡も無視できないことが指摘されてきている。本稿では,皮質-基底核回路の異なるループ(あるいは機能ドメイン)間を結ぶ神経連絡に焦点を当てて,今日までの解剖学的な研究を概観する。
参考文献
1) Keefe K, Gerfen C: D1-D2 dopamine receptor synergy in striatum: effects of intrastriatal infusions of dopamine agonists and antagonists on immediate early gene expression. Neuroscience 66: 903-913, 1995
2) Calabresi P, Maj R, Mercuri NB, Bernardi G: Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci Lett 142: 95-99, 1992
3) Wickens JR, Begg AJ, Arbuthnott GW: Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience 70: 1-5, 1996
4) Nambu A, Tokuno H, Takada M: Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect' pathway. Neurosci Res 43: 111-117, 2002
5) Takada M, Tokuno H, Nambu A, Inase M: Corticostriatal projections from the somatic motor areas of the frontal cortex in the macaque monkey: segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the premotor cortex. Exp Brain Res 120: 114-128, 1998
6) Alexander GE, DeLong MR: Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. J Neurophysiol 53: 1417-1430, 1985
7) Tokuno H, Inase M, Nambu A, Akazawa T, Miyachi S, et al: Corticostriatal projections from distal and proximal forelimb representations of the monkey primary motor cortex. Neurosci Lett 269: 33-36, 1999
8) Inase M, Tokuno H, Nambu A, Akazawa T, Takada M: Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833: 191-201, 1999
9) Flaherty AW, Graybiel AM: Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey. J Neurosci 13: 1120-1137, 1993
10) Selemon LD, Goldman-Rakic PS: Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5: 776-794, 1985
11) Cavada C, Goldman-Rakic PS: Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey. Neuroscience 42: 683-696, 1991
12) Yeterian EH, Pandya DN: Striatal connections of the parietal association cortices in rhesus monkeys. J Comp Neurol 332: 175-197, 1993
13) Yeterian EH, Pandya DN: Corticostriatal connections of the superior temporal region in rhesus monkeys. J Comp Neurol 399: 384-402, 1998
14) Cheng K, Saleem KS, Tanaka K: Organization of corticostriatal and corticoamygdalar projections arising from the anterior inferotemporal area TE of the macaque monkey: a Phaseolus vulgaris leucoagglutinin study. J Neurosci 17: 7902-7925, 1997
15) Calzavara R, Mailly P, Haber SN: Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci 26: 2005-2024, 2007
16) Miyachi S, Hasegawa YT, Gerfen CR: Coincident stimulation of convergent cortical inputs enhances immediate early gene induction in the striatum. Neuroscience 134: 1013-1022, 2005
17) Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, et al: Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20: 3993-4001, 2000
18) Bramham CR, Worley PF, Moore MJ, Guzowski JF: The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28: 11760-11767, 2008
19) Parent A, Bouchard C, Smith Y: The striatopallidal and striatonigral projections: two distinct fiber systems in primate. Brain Res 303: 385-390, 1984
20) Selemon LD, Goldman-Rakic PS: Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297: 359-376, 1990
21) Hazrati LN, Parent A: The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592: 213-227, 1992
22) Parent A, Hazrati LN: Multiple striatal representation in primate substantia nigra. J Comp Neurol 344: 305-320, 1994
23) Kaneda K, Nambu A, Tokuno H, Takada M: Differential processing patterns of motor information via striatopallidal and striatonigral projections. J Neurophysiol 88: 1420-1432, 2002
24) Parent A, De Bellefeuille L: Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method. Brain Res 245: 201-213, 1982
25) Parent A, Mackey A, Smith Y, Boucher R: The output organization of the substantia nigra in primate as revealed by a retrograde double labeling method. Brain Res Bull 10: 529-537, 1983
26) Sidibe M, Bevan MD, Bolam JP, Smith Y: Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382: 323-347, 1997
27) Yelnik J, Percheron G, Francois C: A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations. J Comp Neurol 227: 200-213, 1984
28) Hoover JE, Strick PL: Multiple output channels in the basal ganglia. Science 259: 819-821, 1993
29) Hoover JE, Strick PL: The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19: 1446-1463, 1999
30) Miyachi S, Lu X, Imanishi M, Sawada K, Nambu A, et al: Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex. Neurosci Res 56: 300-308, 2006
31) Haber SN, Lynd E, Klein C, Groenewegen HJ: Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293: 282-298, 1990
32) Russchen FT, Amaral DG, Price JL: The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J Comp Neurol 242: 1-27, 1985
33) Gerfen C: The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15: 133-139, 1992
34) Haber SN: The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26: 317-330, 2003
掲載誌情報