icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩61巻4号

2009年04月発行

特集 大脳基底核―分子基盤から臨床まで

直接路・間接路・ハイパー直接路の機能

著者: 南部篤1

所属機関: 1自然科学研究機構生理学研究所生体システム研究部門

ページ範囲:P.360 - P.372

文献概要

はじめに

 大脳基底核の神経回路や機能に関しての概念は,1980年代後半から1990年にかけて,脱抑制説,直接路・間接路モデルなどが提唱され,大きく変わった。特に,これらをもとにして大脳基底核疾患の病態を説明したり,さらに定位脳手術,特に脳深部刺激療法が導入されたりした。その後ほぼ20年が経過し,直接路・間接路モデルに矛盾する実験データが報告され,批判もされてきた。本稿では,直接路・間接路,およびそれにハイパー直接路を付け加えたモデルを中心に,大脳基底核の回路や機能,さらには大脳基底核疾患の病態生理をどのように説明できるのか,また,その問題点を指摘することにより,新たなモデルを模索したい。これは,「大脳基底核の機能とは何か?」という本質的な問いに答える道でもあると考えられる。

参考文献

1) DeLong MR, Georgopoulos AP: Motor functions of the basal ganglia. Handbook of Physiology, Sect. 1, The Nervous System Motor Control, Part 2, vol. II. (eds) Brookhart JM, Mountcastle VB, Brooks VB, Geiger SR, American Physiological Society, Bethesda, 1981, pp1017-1061
2) Albin RL, Young AB, Penney JB: The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366-375, 1989
3) Alexander GE, Crutcher MD: Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266-271, 1990
4) DeLong MR: Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13: 281-285, 1990
5) Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, et al: D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250: 1429-1432, 1990
6) Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, et al: Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84: 289-300, 2000
7) Nambu A, Tokuno H, Takada M: Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect' pathway. Neurosci Res 43: 111-117, 2002
8) Levesque M, Parent A: The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci U S A 102: 11888-11893, 2005
9) Aizman O, Brismar H, Uhlen P, Zettergren E, Levey AI, et al: Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 3: 226-230, 2000
10) Gertler TS, Chan CS, Surmeier DJ: Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28: 10814-10824, 2008
11) Day M, Wokosin D, Plotkin JL, Tian X, Surmeier DJ: Differential excitability and modulation of striatal medium spiny neuron dendrites. J Neurosci 28: 11603-11614, 2008
12) McFarland NR, Haber SN: Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci 20: 3798-3813, 2000
13) Ding J, Peterson JD, Surmeier DJ: Corticostriatal and thalamostriatal synapses have distinctive properties. J Neurosci 28: 6483-6492, 2008
14) Kita H: Neostriatal and globus pallidus stimulation induced inhibitory postsynaptic potentials in entopeduncular neurons in rat brain slice preparations. Neuroscience 105: 871-879, 2001
15) Sims RE, Woodhall GL, Wilson CL, Stanford IM: Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro. Eur J Neurosci 28: 2401-2408, 2008
16) Shink E, Bevan MD, Bolam JP, Smith Y: The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73: 335-357, 1996
17) Smith Y, Bevan MD, Shink E, Bolam JP: Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86: 353-387, 1998
18) Lei W, Jiao Y, Del Mar N, Reiner A: Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24: 8289-8299, 2004
19) Ballion B, Mallet N, Bezard E, Lanciego JL, Gonon F: Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism. Eur J Neurosci 27: 2313-2321, 2008
20) Turner RS, DeLong MR: Corticostriatal activity in primary motor cortex of the macaque. J Neurosci 20: 7096-7108, 2000
21) Graybiel AM: Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13: 244-254, 1990
22) Gerfen CR: The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311: 461-464, 1984
23) Kawaguchi Y, Wilson CJ, Emson PC: Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J Neurophysiol 62: 1052-1068, 1989
24) Tepper JM, Wilson CJ, Koos T: Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Res Rev 58: 272-281, 2008
25) Gustafson N, Gireesh-Dharmaraj E, Czubayko U, Blackwell KT, Plenz D: A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro. J Neurophysiol 95: 737-752, 2006
26) Taverna S, Ilijic E, Surmeier DJ: Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease. J Neurosci 28: 5504-5512, 2008
27) Koos T, Tepper JM: Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci 2: 467-472, 1999
28) Calabresi P, Picconi B, Tozzi A, Di Filippo M: Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30: 211-219, 2007
29) Shen W, Flajolet M, Greengard P, Surmeier DJ: Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321: 848-851, 2008
30) Hikosaka O, Wurtz RH: Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J Neurophysiol 49: 1285-1301, 1983
31) Hikosaka O, Takikawa Y, Kawagoe R: Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80: 953-978, 2000
32) Mink JW: The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50: 381-425, 1996
33) Leblois A, Boraud T, Meissner W, Bergman H, Hansel D: Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26: 3567-3583, 2006
34) Isoda M, Hikosaka O: Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J Neurosci 28: 7209-7218, 2008
35) Hikosaka O, Wurtz RH: Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J Neurophysiol 53: 266-291, 1985
36) Hikosaka O, Wurtz RH: Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. J Neurophysiol 53: 292-308, 1985
37) Georgopoulos AP, DeLong MR, Crutcher MD: Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J Neurosci 3: 1586-1598, 1983
38) Anderson ME, Horak FB: Influence of the globus pallidus on arm movements in monkeys. III. Timing of movement-related information. J Neurophysiol 54: 433-448, 1985
39) Mitchell SJ, Richardson RT, Baker FH, DeLong MR: The primate globus pallidus: neuronal activity related to direction of movement. Exp Brain Res 68: 491-505, 1987
40) Hamada I, DeLong MR, Mano N: Activity of identified wrist-related pallidal neurons during step and ramp wrist movements in the monkey. J Neurophysiol 64: 1892-1906, 1990
41) Nambu A, Yoshida S, Jinnai K: Discharge patterns of pallidal neurons with input from various cortical areas during movement in the monkey. Brain Res 519: 183-191, 1990
42) Mink JW, Thach WT: Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. J Neurophysiol 65: 301-329, 1991
43) Turner RS, Anderson ME: Pallidal discharge related to the kinematics of reaching movements in two dimensions. J Neurophysiol 77: 1051-1074, 1997
44) Inase M, Buford JA, Anderson ME: Changes in the control of arm position, movement, and thalamic discharge during local inactivation in the globus pallidus of the monkey. J Neurophysiol 75: 1087-1104, 1996
45) Desmurget M, Turner RS: Testing basal ganglia motor functions through reversible inactivations in the posterior internal globus pallidus. J Neurophysiol 99: 1057-1076, 2008
46) Wichmann T, Bergman H, DeLong MR: The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiol 72: 494-506, 1994
47) Cheruel F, Dormont JF, Amalric M, Schmied A, Farin D: The role of putamen and pallidum in motor initiation in the cat. I. Timing of movement-related single-unit activity. Exp Brain Res 100: 250-266, 1994
48) Cheruel F, Dormont JF, Farin D: Activity of neurons of the subthalamic nucleus in relation to motor performance in the cat. Exp Brain Res 108: 206-220, 1996
49) Hoover JE, Strick PL: The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19: 1446-1463, 1999
50) Middleton FA, Strick PL: Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31: 236-250, 2000
51) Miyachi S, Lu X, Imanishi M, Sawada K, Nambu A, et al: Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex. Neurosci Res 56: 300-308, 2006
52) Akkal D, Dum RP, Strick PL: Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27: 10659-10673, 2007
53) Lu X, Miyachi S, Ito Y, Nambu A, Takada M: Topographic distribution of output neurons in cerebellar nuclei and cortex to somatotopic map of primary motor cortex. Eur J Neurosci 25: 2374-2382, 2007
54) Sasaki K: Electrophysiological studies on thalamo-cortical projections. Int Anesthesiol Clin 13: 1-35, 1975
55) Jinnai K, Nambu A, Yoshida S: Thalamic afferents to layer I of anterior sigmoid cortex originating from the VA-VL neurons with entopeduncular input. Exp Brain Res 69: 67-76, 1987
56) Jones EG: The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24: 595-601, 2001
57) Vitek JL, Ashe J, DeLong MR, Kaneoke Y: Microstimulation of primate motor thalamus: somatotopic organization and differential distribution of evoked motor responses among subnuclei. J Neurophysiol 75: 2486-2495, 1996
58) Buford JA, Inase M, Anderson ME: Contrasting locations of pallidal-receiving neurons and microexcitable zones in primate thalamus. J Neurophysiol 75: 1105-1116, 1996
59) Nambu A, Yoshida S, Jinnai K: Movement-related activity of thalamic neurons with input from the globus pallidus and projection to the motor cortex in the monkey. Exp Brain Res 84: 279-284, 1991
60) Person AL, Perkel DJ: Unitary IPSPs drive precise thalamic spiking in a circuit required for learning. Neuron 46: 129-140, 2005
61) Graybiel AM: The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15: 638-644, 2005
62) Samejima K, Ueda Y, Doya K, Kimura M: Representation of action-specific reward values in the striatum. Science 310: 1337-1340, 2005
63) Daw ND, Doya K: The computational neurobiology of learning and reward. Curr Opin Neurobiol 16: 199-204, 2006
64) Matsumoto M, Hikosaka O: Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447: 1111-1115, 2007
65) Nakamura K, Hikosaka O: Role of dopamine in the primate caudate nucleus in reward modulation of saccades. J Neurosci 26: 5360-5369, 2006
66) Nakamura K, Hikosaka O: Facilitation of saccadic eye movements by postsaccadic electrical stimulation in the primate caudate. J Neurosci 26: 12885-12895, 2006
67) Mallet N, Ballion B, Le Moine C, Gonon F: Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci 26: 3875-3884, 2006
68) Wichmann T, DeLong MR, Vitek JL: Pathophysiological considerations in basal ganglia surgery: role of the basal ganglia in hypokinetic and hyperkinetic movement disorders. Movement Disorder Surgery, Prog Neurol Surg, vol 15. (Lozano AM), Basel, Karger, 2000, pp31-57
69) Wichmann T, Vitek JL: Physiology of the basal ganglia and pathophysiology of movement disorders. Surgical Treatment of Parkinson's Disease and Other Movement Disorders. (eds by) Tarsy D, Vitek JL, Lozano AM, Humana Press, Totowa, 2003, pp3-18
70) Wichmann T, Bergman H, Starr PA, Subramanian T, Watts RL, et al: Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp Brain Res 125: 397-409, 1999
71) Raz A, Vaadia E, Bergman H: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of parkinsonism. J Neurosci 20: 8559-8571, 2000
72) Kaneda K, Tachibana Y, Imanishi M, Kita H, Shigemoto R, et al: Down-regulation of metabotropic glutamate receptor 1 α in globus pallidus and substantia nigra of parkinsonian monkeys. Eur J Neurosci 22: 3241-3254, 2005
73) Rivlin-Etzion M, Marmor O, Saban G, Rosin B, Haber SN, et al: Low-pass filter properties of basal ganglia cortical muscle loops in the normal and MPTP primate model of parkinsonism. J Neurosci 28: 633-649, 2008
74) Day M, Wang Z, Ding J, An X, Ingham CA, et al: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9: 251-259, 2006
75) Nambu A: A new approach to understand the pathophysiology of Parkinson's disease. J Neurol 252 (Suppl): IV1-IV4, 2005
76) Leblois A, Meissner W, Bezard E, Bioulac B, Gross CE, et al: Temporal and spatial alterations in GPi neuronal encoding might contribute to slow down movement in Parkinsonian monkeys. Eur J Neurosci 24: 1201-1208, 2006
77) Leblois A, Meissner W, Bioulac B, Gross CE, Hansel D, et al: Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism. Eur J Neurosci 26: 1701-1713, 2007
78) Degos B, Deniau JM, Thierry AM, Glowinski J, Pezard L, et al: Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. J Neurosci 25: 7687-7696, 2005
79) Dejean C, Gross CE, Bioulac B, Boraud T: Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. J Neurophysiol 100: 385-396, 2008
80) Chiken S, Shashidharan P, Nambu A: Cortically evoked long-lasting inhibition of pallidal neurons in a transgenic mouse model of dystonia. J Neurosci 28: 13967-13977, 2008
81) Bergman H, Feingold A, Nini A, Raz A, Slovin H, et al: Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 21: 32-38, 1998
82) Levy R, Hutchison WD, Lozano AM, Dostrovsky JO: High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci 20: 7766-7775, 2000
83) Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, et al: Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. J Neurosci 21: 1033-1038, 2001
84) Brown P: Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr Opin Neurobiol 17: 656-664, 2007
85) Rivlin-Etzion M, Marmor O, Heimer G, Raz A, Nini A, et al: Basal ganglia oscillations and pathophysiology of movement disorders. Curr Opin Neurobiol 16: 629-637, 2006
86) Bergman H, Wichmann T, DeLong MR: Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249: 1436-1438, 1990
87) Lozano AM, Dostrovsky J, Chen R, Ashby P: Deep brain stimulation for Parkinson's disease: disrupting the disruption. Lancet Neurol 1: 225-231, 2002
88) Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, et al: Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84: 570-574, 2000
89) Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL: Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23: 1916-1923, 2003
90) Anderson ME, Postupna N, Ruffo M: Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol 89: 1150-1160, 2003
91) Maurice N, Thierry AM, Glowinski J, Deniau JM: Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus. J Neurosci 23: 9929-9936, 2003
92) Kita H, Tachibana Y, Nambu A, Chiken S: Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey. J Neurosci 25: 8611-8619, 2005
93) Nambu A: Globus pallidus internal segment. Prog Brain Res 160: 135-150, 2007

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら