1) McGraw MB: Neuromuscular development of the human infant as exemplified in the achievement of erect locomotion. J Pediatr 17: 747-771, 1940
2) MacLean PD: The triune brain in evolution: role in paleocerebral functions. Plenum, New York, 1990
3) Leyton ASF, Sherrington CS: Observations on the excitable cortex of the chimpanzee, orang-utan, and gorilla. Q J Exp Physiol 11: 135-222, 1917
4) Kuypers HG: An anatomical analysis of cortico-bulbar connexions to the pons and the lower brain stem in the cat. J Anat 92: 198-218, 1958
5) Wiesendanger R, Wiesendanger M: Topography of the corticofugal projection to the lateral reticular nucleus in the monkey. J Comp Neurol 256: 570-580, 1987
6) Keizer K, Kuypers HG: Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 74: 311-318, 1989
7) Matsuyama K, Mori F, Nakajima K, Drew T, Aoki M, et al: Locomotor role of the corticoreticular-reticulospinal-spinal interneuronal system. Prog Brain Res 143: 239-249, 2004
8) Kuze B, Matsuyama K, Matsui T, Miyata H, Mori S: Segment-specific branching patterns of single vestibulospinal axons arising from the lateral vestibular nucleus in the cat: A PHA-L tracing study. J Comp Neurol 414: 80-96, 1999
9) Kuypers HGJM: Anatomy of the descending pathways. In Handbook of Physiology, Section 1: The Nervous System, Volume II. Motor Control Part 1. Brooks VB (Ed). American Physiological Society, Bethesda, 1981, pp597-666
10) Sherrington CS: Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40: 28-121, 1910
11) Shik ML, Severin FV, Orlovski GN: Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11: 659-666, 1966
12) Hinsey JC, Ranson SW, McNattin RF: The role of the hypothalamus and mesencephalon in locomotion. Arc Neurol Psychiatr 23: 1-43, 1930
13) Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, et al: Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82: 290-300, 1999
14) Mori S: Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 28: 161-195, 1987
15) Graham Brown T: The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B Biol Sci 84: 308-319, 1911
16) Grillner S: Control of locomotion in bipeds, tetrapods, and fish. In Handbook of Physiology, Section 1: The Nervous System, Volume II. Motor Control Part 2. Brooks VB (Ed). American Physiological Society, Bethesda, 1981, pp1179-1236
17) Lafreniere-Roula M, McCrea DA: Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J Neurophysiol 94: 1120-1132, 2005
18) Hunt RJ: The stataesthetic and kineaesthetic components of the afferent system. Arch Neurol Psychiatry 8: 311-315, 1922
19) Sherrington CS: Quantitative management of contraction in lowest level co-ordination (Hughlings Jackson Lecture). Brain 54: 1-28, 1931
20) Mori S, Kawahara K, Sakamoto T, Aoki M, Tomiyama T: Setting and resetting of level of postural muscle tone in decerebrate cat by stimulation of brain stem. J Neurophysiol 48: 737-748, 1982
21) Mori S, Nishimura H, Aoki M: Brain stem activation of the spinal stepping generator. The Reticular Formation Revisited: specifying function for a nonspecific system. Hobson JA, Brazier MAB (Eds). New York, Raven Press, 1980, pp241-260
22) Ohta Y, Mori S, Kimura H: Neuronal structures of the brainstem participating in postural suppression in cats. Neurosci Res 5: 181-202, 1988
23) Aoki M, Mori S: Locomotion elicited by pinna stimulation in the acute precollicular-postmammillary decerebrate cat. Brain Res 214: 424-428, 1981
24) Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T: Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119: 293-308, 2003
25) Schaltenbrand G, Cobb S: Clinical and anatomical studies on two cats without neocortex. Brain 53: 449-488, 1931
26) Gahery Y, Nieoullon A: Postural and kinetic coordination following cortical stimuli which induce flexion movements in the cat's limbs. Brain Res 149: 25-37, 1978
27) Armstrong DM, Drew T: Discharges of pyramidal tract and other motor cortical neurones during locomotion in the cat. J Physiol 346: 471-495, 1984
28) Drew T: Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs. J Neurophysiol 70: 179-199, 1993
29) Beloozerova IN, Sirota MG: The role of motor cortex in the control of accuracy of locomotor movements in the cat. J Physiol 461: 1-25, 1993
30) Courtine G, Roy RR, Raven J, Hodgson J, McKay H, et al: Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta). Brain 128: 2338-2358, 2005
31) Jiang W, Drew T: Effects of bilateral lesions of the dorsolateral funiculi and dorsal columns at the level of the low thoracic spinal cord on the control of locomotion in the adult cat. I. Treadmill walking. J Neurophysiol 76: 849-866, 1996
32) Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, et al: Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 228: 183-186, 1997
33) Hanakawa T, Katsumi Y, Fukuyama H, Honda M, Hayashi T, et al: Mechanisms underlying gait disturbance in Parkinson's disease: a single photon emission computed tomography study. Brain 122: 1271-1282, 1999
34) Miyai I, Tanabe HC, Sase I, Eda H, Oda I, et al: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14: 1186-1192, 2001
35) Jueptner M, Weiller C: Review: does measurement of regional cerebral blood flow reflect synaptic activity? ― Implications for PET and fMRI. Neuroimage 2: 148-156, 1995
36) Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A: Neurophysiological investigation of the basis of the fMRI signal. Nature 412: 150-157, 2001
37) Capaday C: The special nature of human walking and its neural control. Trends Neurosci 25: 370-376, 2002
38) Hildebrand M: Symmetrical gaits of primates. Am J Phys Anthropol 26: 119-130, 1967
39) Tachibana A, Mori F, Boliek CA, Nakajima K, Takasu C, et al: Acquisition of operant-trained bipedal locomotion in juvenile Japanese monkeys (Macaca fuscata): a longitudinal study. Motor Control 7: 338-410, 2003
40) Nakajima K, Mori F, Takasu C, Mori M, Matsuyama K, et al: Biomechanical constraints in hindlimb joints during the quadrupedal versus bipedal locomotion of M. fuscata. Prog Brain Res 143: 183-190, 2004
41) Mori F, Nakajima K, Tachibana A, Takasu C, Mori M, et al: Reactive and anticipatory control of posture and bipedal locomotion in a nonhuman primate. Prog Brain Res 143: 191-198, 2004
42) Brinkman C, Porter R: Supplementary motor area in the monkey: activity of neurons during performance of a learned motor task. J Neurophysiol 42: 681-709, 1979
43) Tanji J, Kurata K: Neuronal activity in the cortical supplementary motor area related with distal and proximal forelimb movements. Neurosci Lett 12: 201-206, 1979
44) Laplane D, Talairach J, Meininger V, Bancaud J, Orgogozo JM: Clinical consequences of corticectomies involving the supplementary motor area in man. J Neurol Sci 34: 301-314, 1977
45) Muakkassa KF, Strick PL: Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized ‘premotor' areas. Brain Res 177: 176-182, 1979
46) Padoa-Schioppa C, Li CS, Bizzi E: Neuronal correlates of kinematics-to-dynamics transformation in the supplementary motor area. Neuron 36: 751-765, 2002