1) Jöbsis FF: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198: 1264-1247, 1977
2) Okada E, Firbank M, Schweiger M, Arridge SR, Cope M, et al: Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl Opt 36: 21-31, 1997
3) Hoshi Y, Shimada M, Sato C, Iguchi Y: Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy. J Biomed Opt 10: 064032, 2005
4) Villringer A, Obrig H: Near-infarared spectroscopy and imaging. In Brain Mapping The Methods, 2nd e.d. Toga AW, Mazziotta JC (eds). Academic Press: San Diego, 2002, pp 141-158
5) Cope M, Delpy DT, Reynolds EO, Wray S, Wyatt J, et al: Methods of quantitating cerebral near infrared spectroscopy data. Adv Exp Med Biol 222: 183-189, 1988
6) Strangman G, Culver J, Thompson JH, Boas DA: A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17: 719-731, 2002
7) Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, et al: Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. Neuroimage 21: 99-111, 2004
8) Kawaguchi H, Koyama T, Okada E: Effect of probe arrangement on reproducibility of images by near-infrared topography evaluated by a virtual head phantom. Appl Opt 46: 1658-1668, 2007
9) Gibson AP, Hebden JC, Arridge SR: Recent advances in diffuse optical imaging. Phys Med Biol 50: R1-R43, 2005
10) Miyai I, Tanabe HC, Sase I, Eda H, Oda I, et al: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14: 1186-1192, 2001
11) Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, et al: Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 228: 183-186, 1997
12) Suzuki M, Miyai I, Ono T, Oda I, Konishi I, et al: Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage 23: 1020-1026, 2004
13) Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M: Brain activation during maintenance of standing postures in humans. Brain 122: 329-338, 1999
14) Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S: Role of the prefrontal cortex in human balance control. Neuroimage 43: 329-336, 2008
15) Hatakenaka M, Miyai I, Kubota K: Impaired motor skill learning in patients with stroke: A functional NIRS study. In Society for Neuroscience 34th Annual Meeting, San Diego, LA, 2004
16) Mihara M, Miyai I, Haraguchi M, Kikuchi T, Hatakenaka M, et al: Cortical network involved in the adaptation learning of reaching using 3-dimensional robotic rehabilitation system: A functional near-infrared spectroscopic study. Neuroimage 47: S170, 2009
17) Miyai I, Yagura H, Hatakenaka M, Oda I, Konishi I, et al: Longitudinal optical imaging study for locomotor recovery after stroke. Stroke 34: 2866-2870, 2003
18) Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S: Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? Neuroimage 37: 1338-1345, 2007
19) Moseley AM, Stark A, Cameron ID, Pollock A: Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev: CD002840, 2005
20) Miyai I, Yagura H, Oda I, Konishi I, Eda H, et al: Premotor cortex is involved in restoration of gait in stroke. Ann Neurol 52: 188-194, 2002
21) Miyai I, Suzuki M, Hatakenaka M, Kubota K: Effect of body weight support on cortical activation during gait in patients with stroke. Exp Brain Res 169: 85-91, 2006
22) Yagura H, Hatakenaka M, Miyai I: Does therapeutic facilitation add to locomotor outcome of body weight--supported treadmill training in nonambulatory patients with stroke? A randomized controlled trial. Arch Phys Med Rehabil 87: 529-535, 2006
23) Hummel FC, Cohen LG: Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5: 708-712, 2006
24) Nowak DA, Grefkes C, Dafotakis M, Eickhoff S, Kust J, et al: Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Arch Neurol 65: 741-747, 2008
25) Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K: Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke 36: 2681-2686, 2005