文献詳細
増大特集 アルツハイマー病―研究と診療の進歩
文献概要
はじめに
アルツハイマー病(Alzheimer disease:AD)の3大病理変化と言えば,老人斑,神経原線維変化,ニューロン消失である。この中では,老人斑が最も早く脳に出現する。老人斑は,AD,ダウン症,正常加齢の一部でのみみられ,疾患特異性も高い。これらのことから,ADの原因に最も近いのは,老人斑であろうと考えられた。その構成成分であるアミロイドβペプチド(Aβ)の凝集・沈着が,神経原線維変化やニューロン消失,ひいては認知機能低下を引き起こすのであろうと。この仮説は,「アミロイドカスケード仮説」(以下,アミロイド仮説)と名付けられ1),多くの研究者によって支持されてきた。
しかし,現在では,ADはAβの小さな集まりである可溶性のオリゴマーにその原因があると考えられている2,3)。本稿では,この「オリゴマー仮説」がなぜ生まれてきたのか,また,アミロイド仮説からオリゴマー仮説への流れの中で,Aβ凝集体に対する考えがどのように変わってきたのかについて概説する。
アルツハイマー病(Alzheimer disease:AD)の3大病理変化と言えば,老人斑,神経原線維変化,ニューロン消失である。この中では,老人斑が最も早く脳に出現する。老人斑は,AD,ダウン症,正常加齢の一部でのみみられ,疾患特異性も高い。これらのことから,ADの原因に最も近いのは,老人斑であろうと考えられた。その構成成分であるアミロイドβペプチド(Aβ)の凝集・沈着が,神経原線維変化やニューロン消失,ひいては認知機能低下を引き起こすのであろうと。この仮説は,「アミロイドカスケード仮説」(以下,アミロイド仮説)と名付けられ1),多くの研究者によって支持されてきた。
しかし,現在では,ADはAβの小さな集まりである可溶性のオリゴマーにその原因があると考えられている2,3)。本稿では,この「オリゴマー仮説」がなぜ生まれてきたのか,また,アミロイド仮説からオリゴマー仮説への流れの中で,Aβ凝集体に対する考えがどのように変わってきたのかについて概説する。
参考文献
1) Hardy JA, Higgins GA: Alzheimer's disease: the amyloid cascade hypothesis. Science 256: 184-185, 1992
2) Klein WL, Krafft GA, Finch CE: Targeting small Aβ oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci 24: 219-224, 2001
3) Selkoe DJ: Alzheimer's disease is a synaptic failure. Science 298: 789-791, 2002
4) Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, et al: β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735-741, 1999
5) Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, et al: The role of presenilin cofactors in the γ-secretase complex. Nature 422: 438-441, 2003
6) Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ: The intracellular domain of the β-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem 276: 40288-40292, 2001
7) Qi-Takahara Y, Morishima-Kawashima M, Tanimura Y, Dolios G, Hirotani N, et al: Longer forms of amyloid β protein: implications for the mechanism of intramembrane cleavage by γ-secretase. J Neurosci 25: 436-445, 2005
8) Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, et al: Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6: 143-150, 2000
9) Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, et al: Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J Biol Chem 273: 32730-32738, 1998
10) Deane R, Wu Z, Sagare A, Davis J, Du Yan S, et al: LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43: 333-344, 2004
11) Lorenzo A, Yankner BA: β-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A 91: 12243-12247, 1994
12) Jarrett JT, Lansbury PT Jr: Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73: 1055-1058, 1993
13) Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, et al: Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron 13: 45-53, 1994
14) Tanzi RE, Bertram L: Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120: 545-555, 2005
15) Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, et al: APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38: 24-26, 2006
16) Yang LB, Lindholm K, Yan R, Citron M, Xia W, et al: Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9: 3-4, 2003
17) Yasojima K, Akiyama H, McGeer EG, McGeer PL: Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of β-amyloid peptide. Neurosci Lett 297: 97-100, 2001
18) Zhao Z, Xiang Z, Haroutunian V, Buxbaum JD, Stetka B, et al: Insulin degrading enzyme activity selectively decreases in the hippocampal formation of cases at high risk to develop Alzheimer's disease. Neurobiol Aging 28: 824-830, 2007
19) Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, et al: Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol 162: 313-319, 2003
20) Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, et al: ApoE promotes the proteolytic degradation of Aβ. Neuron 58: 681-693, 2008
21) Deane R, Sagare A, Hamm K, Parisi M, Lane S, et al: apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J Clin Invest 118: 4002-4013, 2008
22) Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, et al: Dominant and differential deposition of distinct β-amyloid peptide species, AβN3(pE), in senile plaques. Neuron 14: 457-466, 1995
23) Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, et al: Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416: 535-539, 2002
24) Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, et al: Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nature Neurosci 8: 79-84, 2005
25) Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, et al: Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27: 2866-2875, 2007
26) Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, et al: Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14: 837-842, 2008
27) Townsend M, Mehta T, Selkoe DJ: Soluble Aβ inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282: 33305-33312, 2007
28) Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, et al: Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62: 788-801, 2009
29) Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, et al: Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95: 6448-6453, 1998
30) Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, et al: A specific amyloid-β protein assembly in the brain impairs memory. Nature 440: 352-357, 2006
31) Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, et al: Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci 27: 796-807, 2007
32) De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, et al: Alzheimer's disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers. Neurobiol Aging 29: 1334-1347, 2008
33) Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, et al: Alzheimer's disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci U S A 100: 10417-10422, 2003
34) De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, et al: Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282: 11590-11601, 2007
35) Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, et al: Amyloid β oligomers induce impairment of neuronal insulin receptors. FASEB J 22: 246-260, 2008
36) Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB: Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272: 22364-22372, 1997
37) Quist A, Doudevski I, Lin H, Azimova R, Ng D, et al: Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102: 10427-10432, 2005
38) Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, et al: Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284: 4230-4237, 2009
39) Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, et al: Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nat Neurosci 5: 452-457, 2002
40) Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, et al: Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372: 216-223, 2008
41) Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, et al: Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27: 224-233, 2008
42) Gaspar RC, Villarreal SA, Bowles N, Hepler RW, Joyce JG, et al: Oligomers of β-amyloid are sequestered into and seed new plaques in the brains of an AD mouse model. Exp Neurol doi: 10.1016/j.expneurol.2009.09.001, 2009
43) Tomiyama T, Nagata T, Shimada H, Teraoka R, Fukushima A, et al: A new amyloid β variant favoring oligomerization in Alzheimer's-type dementia. Ann Neurol 63: 377-387, 2008
44) Tomiyama T, Matsuyama S, Iso H, Umeda T, Takuma H, et al; A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30: 4845-4856, 2010
掲載誌情報