icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩63巻7号

2011年07月発行

増大特集 神経筋接合部―基礎から臨床まで

神経筋接合部における遺伝子異常と疾患

著者: 大野欽司1

所属機関: 1名古屋大学大学院医学系研究科・神経遺伝情報学

ページ範囲:P.669 - P.678

文献概要

はじめに

 神経筋接合部は,プロトタイプシナプスとしてシナプス電気生理機構ならびにシナプス分子構築機構が古くから精力的に研究され,最も解明が行われてきたシナプスである。神経筋接合に発現をする分子の先天的な遺伝子変異による神経筋接合部信号伝達異常は,筋力低下・易疲労性・筋委縮・顔面小奇形を特徴とする先天性筋無力症候群(congenital myasthenic syndromes:CMS)を惹き起こす1)。CMSは欠損する分子の部位により,前シナプス型,シナプス型,後シナプス型に分類される(Fig.1)。CMSにおいて同定をされてきた変異分子は(i)ニコチン作動性筋アセチルコリン受容体(muscle nicotinic acetylcholine receptor:AChR)2,3),(ii)AChRを筋終板に集積をさせるラプシン(rapsyn)4,5),(iii)神経終末より放出をされAChRクラスター形成を促進するアグリン(agrin)6),(iv)アグリンのシグナルを受容しAChRクラスター形成を促進する筋特異的チロシンキナーゼ(muscle specific receptor tyrosine kinase:MuSK)7,8),(v)MuSKと協調してAChRクラスター形成に作用をするDok-79,10),(vi)筋終板のAChRの脱分極を骨格筋全般に伝播する電位依存性筋ナトリウムチャネル(voltage-gated muscle sodium channel, NaV1.4)11),(vii)アセチルコリンエステラーゼ(acetylcholinesterase:AChE)をシナプス基底膜に係留するコラーゲンQ(collagen Q:ColQ)12-14),(viii)神経終末から再取り込みされたコリンからAChを再合成するコリンアセチルトランフェラーゼ(choline acetyltransferase:ChAT)15)がある。本稿ではこれらのうち筆者らが同定をしてきたAChR,rapsyn,NaV1.4,ColQ,ChATを中心に紹介をする。

 さらに,ヒトは胎生33週まではAChRεサブユニットの代わりにAChRγサブユニットを使うγ-AChRを神経筋接合部において発現しているため16),AChRγサブユニットの先天的な遺伝子変異17,18)はfetal akinesia deformation sequence(FADS)を惹き起こす。また,AChRαサブユニットとAChRδサブユニットの変異によってもFADSが起きることが報告をされている19)。また,シナプス基底膜に集積しColQやジストログリカン(dystroglycan)をはじめとする数多くの分子との結合が知られているパールカン(perlecan)の欠損は,Schwartz-Jampel症候群の原因となる20,21)。興味深いことにアグリン受容体であるLDL receptor-related protein 4(LRP4)の遺伝子変異は神経筋接合部信号伝達障害ではなく,Cenani-Lenz合指症候群(Cenani-Lenz syndactyly syndrome)の原因となる22)。Lrp4ノックアウトマウスも多指症の表現型を取ることが報告をされている23)

 これら遺伝性疾患に加えて,神経筋接合部分子は自己免疫疾患の標的にもなり,AChR24)・MuSK25,26)・LRP427)に対する自己抗体は重症筋無力症(myasthenia gravis:MG)の原因になる。さらに,AChRαサブユニットのプロモータ領域のSNP(single nucleotide polymorphism)が若年発症のMGの発症率を2.01~2.35倍増加させることが報告をされている28)。このSNPは,胸腺上皮細胞におけるAChRαサブユニットの発現を減弱させ,T細胞のAChRに対する免疫寛容を成立させにくくすることによりMGの発症率を上げる。

 神経終末のP/Q型電位依存性カルシウムチャネル(P/Q-type voltage-gated calcium channel:VGCC)に対する自己抗体はLambert-Eaton筋無力症候群(Lambert-Eaton myasthenic syndrome)を惹き起こす24)。同様に,神経終末の電位依存性カリウムチャネル(voltage-gated potassium channel:VGKC)に対する自己抗体はIsaac's症候群(神経ミオトニア:neuromyotonia)の原因となる29)。さらに,神経筋接合部分子を標的とする病態として,サリンや有機リン農薬などのAChE阻害作用,蛇毒αバンガロトキシンや植物毒クラレのAChR阻害作用,ボツリヌス毒素のSNARE〔soluble N-ethylmale-mide-sensitive fusion attachmentprotein (SNAP) receptor〕複合体阻害作用が知られている。

参考文献

1) Engel AG, Ohno K, Sine SM: Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci 4: 339-352, 2003
2) Ohno K, Hutchinson DO, Milone M, Brengman JM, Bouzat C, et al: Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the epsilon subunit. Proc Natl Acad Sci U S A 92: 758-762, 1995
3) Sine SM, Ohno K, Bouzat C, Auerbach A, Milone M, et al: Mutation of the acetylcholine receptor alpha subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity. Neuron 15: 229-239, 1995
4) Ohno K, Engel AG, Shen XM, Selcen D, Brengman J, et al: Rapsyn mutations in humans cause endplate acetylcholine-receptor deficiency and myasthenic syndrome. Am J Hum Genet 70: 875-885, 2002
5) Milone M, Shen XM, Selcen D, Ohno K, Brengman J, et al: Myasthenic syndrome due to defects in rapsyn: Clinical and molecular findings in 39 patients. Neurology 73: 228-235, 2009
6) Huze C, Bauche S, Richard P, Chevessier F, Goillot E, et al: Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet 85: 155-167, 2009
7) Chevessier F, Faraut B, Ravel-Chapuis A, Richard P, Gaudon K, et al: MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet 13: 3229-3240, 2004
8) Chevessier F, Girard E, Molgo J, Bartling S, Koenig J, et al: A mouse model for congenital myasthenic syndrome due to MuSK mutations reveals defects in structure and function of neuromuscular junctions. Hum Mol Genet 17: 3577-3595, 2008
9) Beeson D, Higuchi O, Palace J, Cossins J, Spearman H, et al: Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science 313: 1975-1978, 2006
10) Hamuro J, Higuchi O, Okada K, Ueno M, Iemura S, et al: Mutations causing DOK7 congenital myasthenia ablate functional motifs in Dok-7. J Biol Chem 283: 5518-5524, 2008
11) Tsujino A, Maertens C, Ohno K, Shen XM, Fukuda T, et al: Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci U S A 100: 7377-7382, 2003
12) Ohno K, Brengman J, Tsujino A, Engel AG: Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci U S A 95: 9654-9659, 1998
13) Ohno K, Brengman JM, Felice KJ, Cornblath DR, Engel AG: Congenital end-plate acetylcholinesterase deficiency caused by a nonsense mutation and an A-->G splice-donor-site mutation at position +3 of the collagenlike-tail-subunit gene (COLQ): how does G at position +3 result in aberrant splicing? Am J Hum Genet 65: 635-644, 1999
14) Kimbell LM, Ohno K, Engel AG, Rotundo RL: C-terminal and heparin-binding domains of collagenic tail subunit are both essential for anchoring acetylcholinesterase at the synapse. J Biol Chem 279: 10997-11005, 2004
15) Ohno K, Tsujino A, Brengman JM, Harper CM, Bajzer Z, et al: Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci U S A 98: 2017-2022, 2001
16) Hesselmans LF, Jennekens FG, Van den Oord CJ, Veldman H, Vincent A: Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors. Anat Rec 236: 553-562, 1993
17) Morgan NV, Brueton LA, Cox P, Greally MT, Tolmie J, et al: Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple pterygium syndrome. Am J Hum Genet 79: 390-395, 2006
18) Hoffmann K, Muller JS, Stricker S, Megarbane A, Rajab A, et al: Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal gamma subunit. Am J Hum Genet 79: 303-312, 2006
19) Michalk A, Stricker S, Becker J, Rupps R, Pantzar T, et al: Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet 82: 464-476, 2008
20) Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y: Perlecan is essential for cartilage and cephalic development. Nat Genet 23: 354-358, 1999
21) Arikawa-Hirasawa E, Rossi SG, Rotundo RL, Yamada Y: Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice. Nat Neurosci 5: 119-123, 2002
22) Li Y, Pawlik B, Elcioglu N, Aglan M, Kayserili H, et al: LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am J Hum Genet 86: 696-706, 2010
23) Johnson EB, Hammer RE, Herz J: Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum Mol Genet 14: 3523-3538, 2005
24) Farrugia ME, Vincent A: Autoimmune mediated neuromuscular junction defects. Curr Opin Neurol 23: 489-495, 2010
25) Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, et al: Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7: 365-368, 2001
26) Cole RN, Reddel SW, Gervasio OL, Phillips WD: Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction. Ann Neurol 63: 782-789, 2008
27) Higuchi O, Hamuro J, Motomura M, Yamanashi Y: Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69: 418-422, 2011
28) Giraud M, Taubert R, Vandiedonck C, Ke X, Levi-Strauss M, et al: An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 448: 934-937, 2007
29) Shillito P, Molenaar PC, Vincent A, Leys K, Zheng W, et al: Acquired neuromyotonia: evidence for autoantibodies directed against K+ channels of peripheral nerves. Ann Neurol 38: 714-722, 1995
30) Cai Y, Cronin CN, Engel AG, Ohno K, Hersh LB, et al: Choline acetyltransferase structure reveals distribution of mutations that cause motor disorders. EMBO J 23: 2047-2058, 2004
31) Ohno K, Engel AG, Brengman JM, Shen XM, Heidenrich F, et al: The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann Neurol 47: 162-170, 2000
32) Bestue-Cardiel M, Saenz de Cabezon-Alvarez A, Capablo-Liesa JL, Lopez-Pison J, Pena-Segura JL, et al: Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology 65: 144-146, 2005
33) Mihaylova V, Muller JS, Vilchez JJ, Salih MA, Kabiraj MM, et al: Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain 131: 747-759, 2008
34) Sieb JP, Engel AG: Ephedrine: effects on neuromuscular transmission. Brain Res 623: 167-171, 1993
35) Milone M, Engel AG: Block of the endplate acetylcholine receptor channel by the sympathomimetic agents ephedrine, pseudoephedrine, and albuterol. Brain Res 740: 346-352, 1996
36) Fukudome T, Ohno K, Brengman JM, Engel AG: Quinidine normalizes the open duration of slow-channel mutants of the acetylcholine receptor. Neuroreport 9: 1907-1911, 1998
37) Harper CM, Fukodome T, Engel AG: Treatment of slow-channel congenital myasthenic syndrome with fluoxetine. Neurology 60: 1710-1713, 2003
38) Ohno K, Wang HL, Milone M, Bren N, Brengman JM, et al: Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor epsilon subunit. Neuron 17: 157-170, 1996
39) Milone M, Wang HL, Ohno K, Prince R, Fukudome T, et al: Mode switching kinetics produced by a naturally occurring mutation in the cytoplasmic loop of the human acetylcholine receptor epsilon subunit. Neuron 20: 575-588, 1998
40) Wang HL, Milone M, Ohno K, Shen XM, Tsujino A, et al: Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nat Neurosci 2: 226-233, 1999
41) Shen X-M, Ohno K, Sine SM, Engel AG: Subunit-specific contribution to agonist binding and channel gating revealed by inherited mutation in muscle acetylcholine receptor M3-M4 linker. Brain 128: 345-355, 2005
42) Shen XM, Fukuda T, Ohno K, Sine SM, Engel AG: Congenital myasthenia-related AChR delta subunit mutation interferes with intersubunit communication essential for channel gating. J Clin Invest 118: 1867-1876, 2008
43) Ohno K, Quiram PA, Milone M, Wang H-L, Harper MC, et al: Congenital myasthenic syndromes due to heteroallelic nonsense/missense mutations in the acetylcholine receptor epsilon subunit gene: identification and functional characterization of six new mutations. Hum Mol Genet 6: 753-766, 1997
44) Ohno K, Anlar B, Ozdirim E, Brengman JM, DeBleecker JL, et al: Myasthenic syndromes in Turkish kinships due to mutations in the acetylcholine receptor. Ann Neurol 44: 234-241, 1998
45) Ohno K, Engel AG: Congenital myasthenic syndromes: Genetic defects of the neuromuscular junction. Curr Neurol Neurosci Rep 2: 78-88, 2002
46) Ohno K, Sadeh M, Blatt I, Brengman JM, Engel AG: E-box mutations in the RAPSN promoter region in eight cases with congenital myasthenic syndrome. Hum Mol Genet 12: 739-748, 2003
47) Ohno K, Engel AG: Lack of founder haplotype for the rapsyn N88K mutation: N88K is an ancient founder mutation or arises from multiple founders. J Med Genet 41: e8, 2004
48) Raja Rayan DL, Hanna MG: Skeletal muscle channelopathies: nondystrophic myotonias and periodic paralysis. Curr Opin Neurol 23: 466-476, 2010
49) Struyk AF, Scoggan KA, Bulman DE, Cannon SC: The human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation. Neurosci 20: 8610-8617, 2000

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら