1) Lindvall O, Bjorklund A: Transplantation strategies in the treatment of Parkinson's disease: experimental basis and clinical trials. Acta Neurol Scand Suppl 126: 197-210, 1989
2) Diener PS, Bregman BS: Fetal spinal cord transplants support growth of supraspinal and segmental projections after cervical spinal cord hemisection in the neonatal rat. J Neurosci 18: 779-793, 1998
3) Diener PS, Bregman BS: Fetal spinal cord transplants support the development of target reaching and coordinated postural adjustments after neonatal cervical spinal cord injury. J Neurosci 18: 763-778, 1998
4) Kaneko S, Iwanami A, Nakamura M, Kishino A, Kikuchi K, et al: A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 12: 1380-1389, 2006
5) Barnabe-Heider F, Frisen J: Stem cells for spinal cord repair. Cell Stem Cell 3: 16-24, 2008
6) Nakamura M, Bregman BS: Differences in neurotrophic factor gene expression profiles between neonate and adult rat spinal cord after injury. Exp Neurol 169: 407-415, 2001
7) Okano H: Stem cell biology of the central nervous system. J Neurosci Res 69: 698-707, 2002
8) Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707-1710, 1992
9) Okada Y, Matsumoto A, Shimazaki T, Enoki R, Koizumi A, et al: Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells. Stem Cells 26: 3086-3098, 2008
10) Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, et al: Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 69: 925-933, 2002
11) Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, et al: Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 80: 182-190, 2005
12) McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, et al: Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5: 1410-1412, 1999
13) Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, et al: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25: 4694-4705, 2005
14) Strauss S: Geron trial resumes, but standards for stem cell trials remain elusive. Nat Biotechnol 28: 989-990, 2010
15) Kumagai G, Okada Y, Yamane J, Nagoshi N, Kitamura K, et al: Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury. PLoS One 4: e7706, 2009
16) Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676, 2006
17) Okita K, Ichisaka T, Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature 448: 313-317, 2007
18) Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, et al: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26: 101-106, 2008
19) Miura K, Okada Y, Aoi T, Okada A, Takahashi K, et al: Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27: 743-745, 2009
20) Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M, et al: Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A 107: 12704-12709, 2010
21) Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, et al: In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J 19: 1839-1841, 2005
22) Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, et al: Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1.Nature 474: 225-229, 2011
23) Seki T, Yuasa S, Oda M, Egashira T, Yae K, et al: Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7: 11-14, 2010
24) Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, et al: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1.Science 302: 415-419, 2003
25) Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S: Generation of mouse induced pluripotent stem cells without viral vectors. Science 322: 949-953, 2008
26) Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, et al: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458: 766-770, 2009
27) Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, et al: Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458: 771-775, 2009
28) Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, et al: Human induced pluripotent stem cells free of vector and transgene sequences. Science 324: 797-801, 2009
29) Jia F, Wilson KD, Sun N, Gupta DM, Huang M, et al: A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7: 197-199, 2010
30) Maherali N, Hochedlinger K: Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol 19: 1718-1723, 2009
31) Zhou H, Wu S, Joo JY, Zhu S, Han DW, et al: Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4: 381-384, 2009
32) Hayashi Y, Chan T, Warashina M, Fukuda M, Ariizumi T, et al: Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions. PLoS One 5: e14099, 2010
33) Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, et al: Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463: 1035-1041, 2010
34) Kim J, Efe JA, Zhu S, Talantova M, Yuan X, et al: Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108: 7838-7843, 2011