文献詳細
特集 線条体の基礎と臨床
文献概要
はじめに
われわれは行動するとき,達成すべき行動目標を正しく設定するため,視覚,聴覚,体性感覚など,外界からの感覚情報や,学習,記憶,情動など,自己が持つ内部情報に基づいて行動計画を立案し,実行する。行動の発現と制御には,これらの情報やこれらの情報から生成される認知情報を扱う大脳皮質と,大脳皮質のほぼ全域から入力を受ける大脳基底核が重要な役割を担っている。線条体は大脳基底核の入力核であり,運動,感覚,認知,情動など,大脳皮質に由来するさまざまなタイプの情報が入力する。
本稿では,このような皮質線条体入力をはじめ,大脳皮質と線条体をつなぐ神経ネットワークについて概説する。
われわれは行動するとき,達成すべき行動目標を正しく設定するため,視覚,聴覚,体性感覚など,外界からの感覚情報や,学習,記憶,情動など,自己が持つ内部情報に基づいて行動計画を立案し,実行する。行動の発現と制御には,これらの情報やこれらの情報から生成される認知情報を扱う大脳皮質と,大脳皮質のほぼ全域から入力を受ける大脳基底核が重要な役割を担っている。線条体は大脳基底核の入力核であり,運動,感覚,認知,情動など,大脳皮質に由来するさまざまなタイプの情報が入力する。
本稿では,このような皮質線条体入力をはじめ,大脳皮質と線条体をつなぐ神経ネットワークについて概説する。
参考文献
1) Parent A, Hazrati LN: Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20: 91-127, 1995
2) Alexander GE, DeLong MR, Strick PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357-381, 1986
3) Alexander GE, Crutcher MD: Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266-271, 1990
4) Takada M, Nambu A, Hatanaka N, Tachibana Y, Miyachi S, et al: Organization of prefrontal outflow toward frontal motor-related areas in macaque monkeys. Eur J Neurosci 19: 3328-3342, 2004
5) Takada M, Tokuno H, Nambu A, Inase M: Corticostriatal projections from the somatic motor areas of the frontal cortex in the macaque monkey: segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the premotor cortex. Exp Brain Res 120: 114-128, 1998
6) Inase M, Tokuno H, Nambu A, Akazawa T, Takada M: Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833: 191-201, 1999
7) Takada M, Tokuno H, Hamada I, Inase M, Ito Y, et al: Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci 14: 1633-1650, 2001
8) Nambu A, Kaneda K, Tokuno H, Takada M: Organization of corticostriatal motor inputs in monkey putamen. J Neurophysiol 88: 1830-1842, 2002
9) Kaneda K, Nambu A, Tokuno H, Takada M: Differential processing patterns of motor information via striatopallidal and striatonigral projections. J Neurophysiol 88: 1420-1432, 2002
10) Hoover JE, Strick PL: Multiple output channels in the basal ganglia. Science 259: 819-821, 1993
11) Miyachi S, Lu X, Inoue S, Iwasaki T, Koike S, et al: Organization of multisynaptic inputs from prefrontal cortex to primary motor cortex as revealed by retrograde transneuronal transport of rabies virus. J Neurosci 25: 2547-2556, 2005
12) Miyachi S, Lu X, Imanishi M, Sawada K, Nambu A, et al: Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex. Neurosci Res 56: 300-308, 2006
13) Tokuno H, Inase M, Nambu A, Akazawa T, Miyachi S, et al: Corticostriatal projections from distal and proximal forelimb representations of the monkey primary motor cortex. Neurosci Lett 269: 33-36, 1999
14) Hoover JE, Strick PL: The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1.J Neurosci 19: 1446-1463, 1999
15) Nambu A, Takada M, Inase M, Tokuno H: Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16: 2671-2683, 1996
16) Nambu A, Tokuno H, Inase M, Takada M: Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239: 13-16, 1997
17) Matelli M, Luppino G, Rizzolatti G: Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav Brain Res 18: 125-136, 1985
18) Hoshi E, Tanji J: Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 17: 234-242, 2007
19) Saga Y, Hirata Y, Takahara D, Inoue K, Miyachi S, et al: Origins of multisynaptic projections from the basal ganglia to rostrocaudally distinct sectors of the dorsal premotor area in macaques. Eur J Neurosci 33: 285-297, 2011
20) Haber SN, Lynd E, Klein C, Groenewegen HJ: Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293: 282-298, 1990
21) Russchen FT, Amaral DG, Price JL: The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J Comp Neurol 242: 1-27, 1985
22) Gerfen CR: The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15: 133-139, 1992
23) Flaherty AW, Graybiel AM: Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey. J Neurosci 13: 1120-1137, 1993
24) Selemon LD, Goldman-Rakic PS: Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5: 776-794, 1985
25) Cavada C, Goldman-Rakic PS: Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey. Neuroscience 42: 683-696, 1991
26) Yeterian EH, Pandya DN: Striatal connections of the parietal association cortices in rhesus monkeys. J Comp Neurol 332: 175-197, 1993
27) Yeterian EH, Pandya DN: Corticostriatal connections of the superior temporal region in rhesus monkeys. J Comp Neurol 399: 384-402, 1998
28) Cheng K, Saleem KS, Tanaka K: Organization of corticostriatal and corticoamygdalar projections arising from the anterior inferotemporal area TE of the macaque monkey: a Phaseolus vulgaris leucoagglutinin study. J Neurosci 17: 7902-7925, 1997
掲載誌情報