icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩65巻10号

2013年10月発行

総説

記憶の分子機構―神経細胞の情報伝達効率を調節するメカニズム

著者: 奥野浩行1

所属機関: 1京都大学大学院医学研究科メディカルイノベーションセンター

ページ範囲:P.1171 - P.1178

文献概要

はじめに

 「脳の世紀」と言われる今世紀に入り早10年以上が経った。この間,これまで生理学,解剖学,神経病理学,精神医学など個別に発展してきた脳神経の研究分野の学際的研究が飛躍的に進み,さらに分子生物学やゲノム医学との融合により,まさに脳の世紀と呼ばれるに相応しい研究成果が出始めている。特に脳イメージングおよび解析技術の革新的な進化などによって,われわれヒトや生きた動物の脳の活動や構造を直接観察できるようになり,現在,国内外で脳の神経細胞の活動や神経細胞同士の連絡様式を網羅的に解析しようという大型プロジェクトが進んでいる1)

 日本のように少子高齢化が進んだ社会において,脳の発達を助け,生涯にわたり機能を維持し,さらに,もしも機能低下が起こった場合には可能な限り回復させる,という医療的要求が今後ますます高まっていくことは想像に難くなく,脳機能の発現機構の解明や脳機能改善のためのそう薬は現在の最重要課題の1つである。特に,最近の知見により,神経ネットワークの発達異常が精神・認知活動の機能的障害をもたらす根本原因の1つであると考えられるようになってきた2,3)。また,われわれは日々の経験を“記憶”として脳の神経ネットワークに書きこみ保存しているが4,5),ストレスや加齢による神経ネットワーク局所の機能不良が蓄積されることにより,記憶の維持や想起能力が低下していくと考えられる。このように,さまざまな脳機能およびその障害を理解するためには神経ネットワークの動作原理を理解することが重要であり,そのためには,まず神経細胞同士の情報伝達機構の基本構造を知り,その作動原理を明らかにする必要がある。

 本稿では,このような観点から,はじめに神経情報伝達の基本素子であるシナプスの機能と構造について概説し,次に,シナプス伝達効率の調節機構について,さらに,シナプス伝達効率の変化を長期化するメカニズムについて最近の研究結果を交えながら解説したい。

参考文献

1) Alivisatos AP, Chun M, Church GM, Deisseroth K, Donoghue JP, et al: Neuroscience: the brain activity map. Science 339: 1284-1285, 2013
2) Brandon NJ, Sawa A: Linking neurodevelopmental and synaptic theories of mental illness through DISC1.Nat Rev Neurosci 12: 707-722, 2011
3) Amaral DG, Schumann CM, Nordahl CW: Neuroanatomy of autism. Trends Neurosci 31: 137-145, 2008
4) Miyashita Y: Cognitive memory: cellular and network machineries and their top-down control. Science 306: 435-440, 2004
5) Wang SH, Morris RGM: Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 61: 49-79, C1-4, 2010
6) Wisden W, Seeburg PH: Mammalian ionotropic glutamate receptors. Curr Opin Neurobiol 3: 291-298, 1993
7) Granger AJ, Gray JA, Lu W, Nicoll RA: Genetic analysis of neuronal ionotropic glutamate receptor subunits. J Physiol 589: 4095-4101, 2011
8) 真鍋俊也: 記憶の分子メカニズム. Brain Nerve 60: 707-715, 2008
9) Nakanishi S: Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597-603, 1992
10) Mori H, Mishina M: Structure and function of the NMDA receptor channel. Neuropharmacology 34: 1219-1237, 1995
11) Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, et al: Glutamate receptors: brain function and signal transduction. Brain Res Brain Res Revi 26: 230-235, 1998
12) Magee JC: Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1: 181-190, 2000
13) Bliss TV, Collingridge GL: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31-39, 1993
14) Bliss TV, Collingridge GL: Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 6: 5, 2013
15) Ito M: Long-term depression. Annu Rev Neurosci 12: 85-102, 1989
16) Bear MF, Abraham WC: Long-term depression in hippocampus. Annu Rev Neurosci 19: 437-462, 1996
17) Hebb DO: The Organization of Behavior: A Neuropsychological Theory. Wiley & Sons, New York, 1949
18) Bliss TV, Lomo T: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331-356, 1973
19) Choquet D: Fast AMPAR trafficking for a high-frequency synaptic transmission. Eur J Neurosci 32: 250-260, 2010
20) Makino H, Malinow R: AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64: 381-390, 2009
21) Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, et al: Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287: 2262-2267, 2000
22) Lisman J, Yasuda R, Raghavachari S: Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13: 169-182, 2012
23) Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, et al: Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 4: 1079-1085, 2001
24) Aiba A, Kano M, Chen C, Stanton ME, Fox GD, et al: Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79: 377-388, 1994
25) Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M: Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89: 309-380, 2009
26) Shipman SL, Nicoll RA: A subtype-specific function for the extracellular domain of neuroligin 1 in hippocampal LTP. Neuron 76: 309-316, 2012
27) Nugent FS, Penick EC, Kauer JA: Opioids block long-term potentiation of inhibitory synapses. Nature 446: 1086-1090, 2007
28) McBain CJ, Kauer JA: Presynaptic plasticity: targeted control of inhibitory networks. Curr Opin Neurobiol 19: 254-262, 2009
29) Kandel ER: The molecular biology of memory storage: a dialogue between genes and synapses. Science 294: 1030-1038, 2001
30) Fonseca R, Nägerl UV, Morris RGM, Bonhoeffer T: Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44: 1011-1020, 2004
31) Redondo RL, Okuno H, Spooner PA, Frenguelli BG, Bito H, et al: Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci 30: 4981-4989, 2010
32) Davis HP, Squire LR: Protein synthesis and memory: a review. Psychol Bull 96: 518-559, 1984
33) Nader K, Schafe GE, LeDoux JE: The labile nature of consolidation theory. Nat Rev Neurosci 1: 216-219, 2000
34) Frey U, Morris RG: Synaptic tagging and long-term potentiation. Nature 385: 533-536, 1997
35) Redondo RL, Morris RGM: Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12: 17-30, 2011
36) Okada D, Ozawa F, Inokuchi K: Input-specific spine entry of soma-derived Vesl-1S protein conforms to synaptic tagging. Science 324: 904-909, 2009
37) Morgan JI, Cohen DR, Hempstead JL, Curran T: Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237: 192-197, 1987
38) Worley PF, Cole AJ, Saffen DW, Baraban JM: Regulation of immediate early genes in brain: role of NMDA receptor activation. Prog Brain Res 86: 277-285, 1990
39) Okuno H: Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res 69: 175-186, 2011
40) Okuno H, Miyashita Y: Expression of the transcription factor Zif268 in the temporal cortex of monkeys during visual paired associate learning. Eur J Neurosci 8: 2118-2128, 1996
41) Cole AJ, Saffen DW, Baraban JM, Worley PF: Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340: 474-476, 1989
42) Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, et al: Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15: 579-586, 2005
43) Guzowski JF, McNaughton BL, Barnes CA, Worley PF: Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2: 1120-1124, 1999
44) Ramírez-Amaya V, Vazdarjanova A, Mikhael D, Rosi S, Worley PF, et al: Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation. J Neurosci 25: 1761-1768, 2005
45) Kawashima T, Kitamura K, Suzuki K, Nonaka M, Kamijo S, et al: Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat Methods, 2013 [Epub ahead of print]
46) Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, et al: Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc Natl Acad Sci U S A 106: 316-321, 2009
47) Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, et al: Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52: 445-459, 2006
48) Rial Verde EM, Lee-Osbourne J, Worley PF, Malinow R, Cline HT: Increased expression of the immediate-early gene Arc/Arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52: 461-474, 2006
49) Béïque JC, Na Y, Kuhl D, Worley PF, Huganir RL: Arc-dependent synapse-specific homeostatic plasticity. Proc Natl Acad Sci U S A 108: 816-821, 2011
50) Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, et al: Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52: 475-484, 2006
51) Okuno H, Akashi K, Ishii Y, Yagishita-Kyo N, Suzuki K, et al: Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149: 886-898, 2012
52) Mikuni T, Uesaka N, Okuno H, Hirai H, Deisseroth K, et al: Arc/Arg3.1 is a postsynaptic mediator of activity-dependent synapse elimination in the developing cerebellum. Neuron 78: 1024-1035, 2013
53) Park S, Park JM, Kim S, Kim JA, Shepherd JD, et al: Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59: 70-83, 2008
54) Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, et al: Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52: 437-444, 2006
55) Peebles CL, Yoo J, Thwin MT, Palop JJ, Noebels JL, et al: Arc regulates spine morphology and maintains network stability in vivo. Proc Natl Acad Sci U S A 107: 18173-18178, 2010
56) Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H: Structure-stability-function relationships of dendritic spines. Trends Neurosci 26: 360-368, 2003
57) Nimchinsky EA, Sabatini BL, Svoboda K: Structure and function of dendritic spines. Annu Rev Physiol 64: 313-353, 2002
58) Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, et al: Creating a false memory in the hippocampus. Science 341: 387-391, 2013
59) Liu X, Ernfors P, Wu H, Jaenisch R: Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature 375: 238-241, 1995
60) Goshen I, Brodsky M, Prakash R, Wallace J, Gradinaru V, et al: Dynamics of retrieval strategies for remote memories. Cell 147: 678-689, 2011

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら