1) Halliday GM, McRitchie DA, Cartwright H, Pamphlett R, Hely MA, et al: Midbrain neuropathology in idiopathic Parkinson's disease and diffuse Lewy body disease. J Clin Neurosci 3: 52-60, 1996
2) Schapira AH: Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol 7: 97-109, 2008
3) Schapira AH: Targeting mitochondria for neuroprotection in Parkinson's disease. Antioxid Redox Signal 16: 965-973, 2012
4) 斉木臣二: パーキンソン病はミトコンドリア障害か?「Yes」の立場から. Frontiers in Parkinson Disease 5: 78-81, 2012
5) Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, et al: Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1(8649): 1269, 1989
6) Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, et al: Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun 163: 1450-1455, 1989
7) Denton T, Howard BD: A dopaminergic cell line variant resistant to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 49: 622-630, 1987
8) Gibb WR, Lees AJ: The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 51: 745-752, 1988
9) Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, et al: Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. Lancet Neurol 8: 1150-1157, 2009
10) Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, et al: Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26: 41-50, 2006
11) Esteves AR, Arduíno DM, Silva DF, Oliveira CR, Cardoso SM: Mitochondrial dysfunction: the road to alpha-synuclein oligomerization in PD. Parkinsons Dis Article ID693761, 2011.doi: 10.4061/2011/693761
12) Sai Y, Zou Z, Peng K, Dong Z: The Parkinson's disease-related genes act in mitochondrial homeostasis. Neurosci Biobehav Rev 36: 2034-2043, 2012
13) Trancikova A, Tsika E, Moore DJ: Mitochondrial dysfunction in genetic animal models of Parkinson's disease. Antioxid Redox Signal 16: 896-919, 2012
14) Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, et al: Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279: 18614-18622, 2004
15) Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, et al: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162-1166, 2006
16) Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, et al: DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A 104: 14807-14812, 2007
17) West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, et al: Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 102: 16842-16847, 2005
18) Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, et al: Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet 14: 2099-2111, 2005
19) Bratic A, Larsson NG: The role of mitochondria in aging. J Clin Invest 123: 951-957, 2013
20) Kregel KC, Zhang HJ: An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292: R18-36, 2007
21) Calne DB, Langston JW: Aetiology of Parkinson's disease. Lancet 2(8365-8366): 1457-1459, 1983
22) Vanitallie TB: Parkinson disease: primacy of age as a risk factor for mitochondrial dysfunction. Metabolism Clinical and Experimental 57(Suppl 2): S50-55, 2008
23) Clarke DD, Sokoloff L: Circulation and energy metabolism of the brain. Siegel G, Agranoff B, Albers RW, Fisher S (eds): Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 6th ed. Lippincott-Raven, Philadelphia, 1999, pp637-669
24) Dienel GA: Energy metabolism in the brain. Byrne JH, Roberts JL (eds): From Molecules to Networks: an Introduction to Cellular and Molecular Neuroscience, 2nd ed. Academic Press, London, 2009, pp49-110
25) Kann O, Kovács R: Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292: C641-657, 2007
26) 髙橋愼一: 脳の機能活動とエネルギー産生の時間的, 空間的プロファイル――ニューロン-アストロサイト連関から見たグルコース代謝. 脳循環代謝9: 1-17, 1997
27) 髙橋愼一: 脳循環代謝に関する最近の知見――ニューロン-アストロサイト-微小循環のネットワーク. 慶應医学82: 119-127, 2005
28) Madsen PL, Cruz NF, Sokoloff L, Dienel GA: Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab 19: 393-400, 1999
29) Fox PT, Raichle ME, Mintun MA, Dence C: Nonoxidative glucose consumption during focal physiologic neural activity. Science 241: 462-464, 1988
30) Fox PT, Raichle ME: Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A 83: 1140-1144, 1986
31) Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, et al: Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci U S A 88: 5829-5831, 1991
32) Pellerin L, Magistretti PJ: Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91: 10625-10629, 1994
33) Pellerin L, Magistretti PJ: Food for thought: challenging the dogmas. J Cereb Blood Flow Metab 23: 1282-1286, 2003
34) Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, et al: Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55: 1251-1262, 2007
35) Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B: Comment on recent modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab 30: 1982-1986, 2010
36) Takahashi S, Izawa Y, Suzuki N: Astrogliopathy as a loss of astroglial protective function against glycoxidative stress under hyperglycemia. 臨床神経52: 41-51, 2012
37) Takahashi S, Izawa Y, Suzuki N: Astroglial pentose phosphate pathway rates in response to high-glucose environments. ASN Neuro 2012 Mar 22; 4(2). pii: e00078.doi: 10.1042/AN20120002
38) Buckner RL, Vincent JL: Unrest at rest: default activity and spontaneous network correlations. Neuroimage 37: 1091-1096, 2007
39) Buckner RL, Andrews-Hanna JR, Schacter DL: The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124: 1-38, 2008
40) Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, et al: Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition. Proc Natl Acad Sci U S A 107: 17763-17767, 2010
41) Hardy JA, Higgins GA: Alzheimer's disease: the amyloid cascade hypothesis. Science 256: 184-185, 1992
42) Sochocka M, Koutsouraki ES, Gsiorowski K, Leszek J: Vascular oxidative stress and mitochondrial failure in the pathobiology of Alzheimer's disease: new approach to therapy. CNS Neurol Disord Drug Targets 12: 870-871, 2013
43) Leuner K, Müller WE, Reichert AS: From mitochondrial dysfunction to amyloid beta formation: novel insights into the pathogenesis of Alzheimer's disease. Mol Neurobiol 46: 186-193, 2012
44) Zhang DX, Gutterman DD: Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292: H2023-2031, 2007
45) Cummings JL, Vinters HV, Cole GM, Khachaturian ZS: Alzheimer's disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51(1 Suppl 1): S2-17, 1998
46) Chan CS, Gertler TS, Surmeier DJ: Calcium homeostasis, selective vulnerability and Parkinson's disease. Trends Neurosci 32: 249-256, 2009
47) Greenamyre JT, Hastings TG: Parkinson's: divergent causes, convergent mechanisms. Science 304: 1120-1122, 2004
48) Miyazaki I, Asanuma M: Approaches to prevent dopamine quinone-induced neurotoxicity. Neurochem Res 34: 698-706, 2009
49) Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H: NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson's disease brains. Acta Neuropathol 99: 14-20, 2000
50) Hishikawa N, Hashizume Y, Yoshida M, Sobue G: Widespread occurrence of argyrophilic glial inclusions in Parkinson's disease. Neuropathol Appl Neurobiol 27: 362-372, 2001
51) Braak H, Sastre M, Del Tredici K: Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson's disease. Acta Neuropathol 114: 231-241, 2007
52) Richter-Landsberg C, Gorath M, Trojanowski JQ, Lee VM: α-synuclein is developmentally expressed in cultured rat brain oligodendrocytes. J Neurosci Res 62: 9-14, 2000
53) Tanji K, Imaizumi T, Yoshida H, Mori F, Yoshimoto M, et al: Expression of alpha-synuclein in a human glioma cell line and its up-regulation by interleukin-1beta. Neuroreport 12: 1909-1912, 2001
54) Mori F, Tanji K, Yoshimoto M, Takahashi H, Wakabayashi K: Demonstration of alpha-synuclein immunoreactivity in neuronal and glial cytoplasm in normal human brain tissue using proteinase K and formic acid pretreatment. Exp Neurol 176: 98-104, 2002
55) Goedert M, Clavaguera F, Tolnay M: The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33: 317-325, 2010
56) Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, et al: Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24: 197-211, 2003
57) Luk KC, Kehm VM, Zhang B, O'Brien P, Trojanowski JQ, et al: Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med 209: 975-986, 2012
58) de Castro IP, Martins LM, Loh SH: Mitochondrial quality control and Parkinson's disease: a pathway unfolds. Mol Neurobiol 43: 80-86, 2011
59) Mildaziene V, Nauciene Z, Krab K: The targets of 2,2∥,5,5∥-tetrachlorobiphenyl in the respiratory chain of rat liver mitochondria revealed by modular kinetic analysis. Mol Biol Rep 29: 31-34, 2002
60) Okamoto K, Kondo-Okamoto N, Ohsumi Y: Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17: 87-97, 2009
61) Houten SM, Auwerx J: PGC-1alpha: turbocharging mitochondria. Cell 119: 5-7, 2004
62) Mortiboys H, Johansen KK, Aasly JO, Bandmann O: Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2.Neurology 75: 2017-2020, 2010
63) Ng CH, Mok SZ, Koh C, Ouyang X, Fivaz ML, et al: Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci 29: 11257-11262, 2009
64) Dagda RK, Chu CT: Mitochondrial quality control: insights on how Parkinson's disease related genes PINK1, parkin, and Omi/HtrA2 interact to maintain mitochondrial homeostasis. J Bioenerg Biomembr 41: 473-479, 2009
65) Halliday GM, Stevens CH: Glia: initiators and progressors of pathology in Parkinson's disease. Mov Disord 26: 6-17, 2011
66) Hirsch EC: Glial cells and Parkinson's disease. J Neurol 247(Suppl 2): II58-62, 2000
67) Wheeler DD, Edwards AM, Chapman BM, Ondo JG: A model of the sodium dependence of dopamine uptake in rat striatal synaptosomes. Neurochem Res 18: 927-936, 1993
68) Torres GE, Gainetdinov RR, Caron MG: Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4: 13-25, 2003
69) Semenoff D, Kimelberg HK: Autoradiography of high affinity uptake of catecholamines by primary astrocyte cultures. Brain Res 348: 125-136, 1985
70) Savchenko VL, McKanna JA, Nikonenko IR, Skibo GG: Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity. Neuroscience 96: 195-203, 2000
71) Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, et al: Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson's disease brains. Neurochem Res 36: 1452-1463, 2011
72) Dringen R, Pfeiffer B, Hamprecht B: Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19: 562-569, 1999
73) Lu SC: Regulation of glutathione synthesis. Mol Aspects Med 30: 42-59, 2009
74) 髙橋愼一: アストロサイトと糖代謝. Clin Neurosci 29: 1262-1267, 2011
75) Takahashi S, Izawa Y, Suzuki N: Necessity of glucose for the activation of pentose phosphate pathway in astroglia under hypoxic conditions. Abstract Society for Neuroscience Program 2011: #11.11.(abstr). 2011
76) Takahashi S: Astroglial protective mechanisms against ROS under brain ischemia. 臨床神経51: 1032-1035, 2011
77) Vargas MR, Johnson JA: The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med. 2009; 11: e17.doi: 10.1017/S1462399409001094
78) Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MM, et al: Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson's disease. Neurochem Res 37: 358-369, 2012
79) Chinta SJ, Kumar MJ, Hsu M, Rajagopalan S, Kaur D, et al: Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 27: 13997-14006, 2007
80) Asanuma M, Miyazaki I, Diaz-Corrales FJ, Kimoto N, Kikkawa Y, et al: Neuroprotective effects of zonisamide target astrocyte. Ann Neurol 67: 239-249, 2010
81) Tanji K, Maruyama A, Odagiri S, Mori F, Itoh K, et al: Keap1 is localized in neuronal and glial cytoplasmic inclusions in various neurodegenerative diseases. J Neuropathol Exp Neurol 72: 18-28, 2013
82) Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature 414: 13-20, 2001
83) Brownlee M: The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54: 1615-1625, 2005
84) Abe T, Takahashi S, Suzuki N: Oxidative metabolism in cultured rat astroglia: effects of reducing the glucose concentration in the culture medium and of D-aspartate or potassium stimulation. J Cereb Blood Flow Metab 26: 153-160, 2006
85) Takahashi S, Abe T, Izawa Y, Suzuki N: Effects of fluctuating glucose concentrations on oxidative metabolism of glucose in cultured neurons and astroglia. Journal of Diabetes Mellitus 2: 19-26, 2012
86) Izawa Y, Takahashi S, Suzuki N: Pioglitazone enhances pyruvate and lactate oxidation in cultured neurons but not in cultured astroglia. Brain Res 1305: 64-73, 2009
87) Colla E, Jensen PH, Pletnikova O, Troncoso JC, Glabe C, et al: Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J Neurosci 32: 3301-3305, 2012
88) Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, et al: Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J Neurosci 32: 3306-3320, 2012
89) Palacios N, Gao X, McCullough ML, Jacobs EJ, Patel AV, et al: Obesity, diabetes, and risk of Parkinson's disease. Mov Disord 26: 2253-2259, 2011
90) Xu Q, Park Y, Huang X, Hollenbeck A, Blair A, et al: Diabetes and risk of Parkinson's disease. Diabetes Care 34: 910-915, 2011
91) Schernhammer E, Hansen J, Rugbjerg K, Wermuth L, Ritz B: Diabetes and the risk of developing Parkinson's disease in Denmark. Diabetes Care 34: 1102-1108, 2011
92) Trinh K, Moore K, Wes PD, Muchowski PJ, Dey J, et al: Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of Parkinson's disease. J Neurosci 28: 465-472, 2008
93) Chen PC, Vargas MR, Pani AK, Smeyne RJ, Johnson DA, et al: Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson's disease: critical role for the astrocyte. Proc Natl Acad Sci U S A 106: 2933-2938, 2009
94) Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rábano A, et al: α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson's disease. Hum Mol Genet 21: 3173-3192, 2012
95) Cook AL, Vitale AM, Ravishankar S, Matigian N, Sutherland GT, et al: NRF2 activation restores disease related metabolic deficiencies in olfactory neurosphere-derived cells from patients with sporadic Parkinson's disease. PLoS One 6: e21907, 2011.doi: 10.1371/journal.pone.0021907
96) Im JY, Lee KW, Woo JM, Junn E, Mouradian MM: DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. Hum Mol Genet 21: 3013-3024, 2012
97) Lin SX, Lisi L, Dello Russo C, Polak PE, Sharp A, et al: The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1.ASN Neuro. 2011; 3(2). pii: e00055.doi: 10.1042/AN20100033
98) Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H, et al: Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 341: 274-284, 2012
99) Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, et al; CONFIRM Study Investigators: Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367: 1087-1097, 2012
100) Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, et al; DEFINE Study Investigators: Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367: 1098-1107, 2012