icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩65巻2号

2013年02月発行

特集 血液脳関門研究の進歩

動的インターフェースとしての脳関門輸送システムと脳関門生理学・創薬研究

著者: 立川正憲1 内田康雄1 寺崎哲也1

所属機関: 1東北大学大学院薬学研究科薬物送達学分野

ページ範囲:P.121 - P.136

文献概要

はじめに

 脳には,循環血液と脳実質細胞および脳脊髄液(cerebrospinal fluid:CSF)の間の物質輸送を厳密に制御する血液脳関門(blood-brain barrier:BBB)および血液脳脊髄液関門(blood-cerebrospinal fluid barrier:BCSFB)がそれぞれ存在する(Fig.1)。脳関門の物質輸送システムの解明は,脳機能発現における神経血管ユニットの病態生理学的役割を理解するだけでなく,良好な脳移行性を持った中枢作用薬の開発戦略の創出および末梢作用薬の中枢性副作用の軽減に直結する重要な課題である。具体的な課題としては,①アミノ酸などの低分子から,ペプチド/蛋白質などの高分子に至る物質輸送機構を,分子レベルで定量的に解明する,②それらの制御機構を分子レベルで解明する,③ヒトにおける脳関門輸送を評価する,などが挙げられる。本稿では,筆者らの最新データを含めたこれまでの研究成果を中心に取り上げ,脳関門輸送研究の進歩とそのゆくえについて概説する。

参考文献

1) Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, et al: Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res 25: 1469-1483, 2008
2) Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, et al: Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 100: 3939-3950, 2011
3) Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, et al: Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117: 333-345, 2011
4) Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, et al: Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest 100: 2842-2848, 1997
5) Janigro D: Blood-brain barrier, ion homeostatis and epilepsy: possible implications towards the understanding of ketogenic diet mechanisms. Epilepsy Res 37: 223-232, 1999
6) Lauritzen F, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, et al: Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus. Neurobiol Dis 41: 577-584, 2011
7) Kang YS, Terasaki T, Tsuji A: Acidic drug transport in vivo through the blood-brain barrier: a role of the transport carrier for monocarboxylic acids. J Pharmacobiodyn 13: 158-163, 1990
8) Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, et al: The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res 879: 115-121, 2000
9) Gomes P, Soares-da-Silva P: L-DOPA transport properties in an immortalised cell line of rat capillary cerebral endothelial cells, RBE 4.Brain Res 829: 143-150, 1999
10) Abbott NJ, Romero IA: Transporting therapeutics across the blood-brain barrier. Mol Med Today 2: 106-113, 1996
11) Peura L, Malmioja K, Laine K, Leppanen J, Gynther M, et al: Large amino acid transporter 1 (LAT1) prodrugs of valproic acid: new prodrug design ideas for central nervous system delivery. Mol Pharm 8: 1857-1866, 2011
12) Gynther M, Laine K, Ropponen J, Leppanen J, Mannila A, et al: Large neutral amino acid transporter enables brain drug delivery via prodrugs. J Med Chem 51: 932-936, 2008
13) Gynther M, Jalkanen A, Lehtonen M, Forsberg M, Laine K, et al: Brain uptake of ketoprofen-lysine prodrug in rats. Int J Pharm 399: 121-128, 2010
14) del Amo EM, Urtti A, Yliperttula M: Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2.Eur J Pharm Sci 35: 161-174, 2008
15) de Vries NA, Zhao J, Kroon E, Buckle T, Beijnen JH, et al: P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13: 6440-6449, 2007
16) Polli JW, Olson KL, Chism JP, John-Williams LS, Yeager RL, et al: An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos 37: 439-442, 2009
17) Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y: Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther 333: 788-796, 2010
18) Tega Y, Akanuma SI, Kubo Y, Terasaki T, Hosoya KI: Blood-to-brain influx transport of nicotine at the rat blood-brain barrier: involvement of a pyrilamine-sensitive organic cation transport process. Neurochem Int (in press)
19) Cisternino S, Chapy H, Andre P, Smirnova M, Debray M, et al: Coexistence of passive and proton antiporter-mediated processes in nicotine transport at the mouse blood-brain barrier. AAPS J, 2012 Dec 5 [Epub ahead of print]
antiporter that interacts with addictive drugs. J Cereb Blood Flow Metab 29: 1293-1304, 2009
21) Okura T, Hattori A, Takano Y, Sato T, Hammarlund-Udenaes M, et al: Involvement of the pyrilamine transporter, a putative organic cation transporter, in blood-brain barrier transport of oxycodone. Drug Metab Dispos 36: 2005-2013, 2008
22) Kubo Y, Kusagawa Y, Tachikawa M, Akanuma SI, Hosoya KI: Involvement of a novel organic cation transporter in verapamil transport across the inner blood-retinal barrier. Pharm Res, 2012 Nov 22 [Epub ahead of print]
23) Bostrom E, Simonsson US, Hammarlund-Udenaes M: In vivo blood-brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metab Dispos 34: 1624-1631, 2006
24) Yanai K, Tashiro M: The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther 113: 1-15, 2007
25) Yamazaki M, Terasaki T, Yoshioka K, Nagata O, Kato H, et al: Carrier-mediated transport of H1-antagonist at the blood-brain barrier: a common transport system of H1-antagonists and lipophilic basic drugs. Pharm Res 11: 1516-1518, 1994
26) Akanuma S, Hosoya K, Ito S, Tachikawa M, Terasaki T, et al: Involvement of multidrug resistance-associated protein 4 in efflux transport of prostaglandin E (2) across mouse blood-brain barrier and its inhibition by intravenous administration of cephalosporins. J Pharmacol Exp Ther 333: 912-919, 2010
27) Akanuma S, Uchida Y, Ohtsuki S, Kamiie J, Tachikawa M, et al: Molecular-weight-dependent, anionic-substrate-preferential transport of beta-lactam antibiotics via multidrug resistance-associated protein 4.Drug Metab Pharmacokinet 26: 602-611, 2011
28) Tachikawa M, Ozeki G, Higuchi T, Akanuma S, Tsuji K, et al: Role of the blood-cerebrospinal fluid barrier transporter as a cerebral clearance system for prostaglandin E (2) produced in the brain. J Neurochem 123: 750-760, 2012
29) Akanuma S, Uchida Y, Ohtsuki S, Tachikawa M, Terasaki T, et al: Attenuation of prostaglandin E2 elimination across the mouse blood-brain barrier in lipopolysaccharide-induced inflammation and additive inhibitory effect of cefmetazole. Fluids Barriers CNS 8: 24, 2011
30) Huang ZL, Urade Y, Hayaishi O: Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7: 33-38, 2007
31) Tachikawa M, Tsuji K, Yokoyama R, Higuchi T, Ozeki G, et al: A clearance system for prostaglandin D2, a sleep-promoting factor, in cerebrospinal fluid: role of the blood-cerebrospinal barrier transporters. J Pharmacol Exp Ther 343: 608-616, 2012
32) Egleton RD, Abbruscato TJ, Thomas SA, Davis TP: Transport of opioid peptides into the central nervous system. J Pharm Sci 87: 1433-1439, 1998
33) Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, et al: Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther 294: 73-79, 2000
34) Dagenais C, Ducharme J, Pollack GM: Uptake and efflux of the peptidic delta-opioid receptor agonist. Neurosci Lett 301: 155-158, 2001
35) Ito S, Ohtsuki S, Katsukura Y, Funaki M, Koitabashi Y, et al: Atrial natriuretic peptide is eliminated from the brain by natriuretic peptide receptor-C-mediated brain-to-blood efflux transport at the blood-brain barrier. J Cereb Blood Flow Metab 31: 457-466, 2011
36) Shibata M, Yamada S, Kumar SR, Calero M, Bading J, et al: Clearance of Alzheimer's amyloid-ss (1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106: 1489-1499, 2000
37) Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, et al: P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 115: 3285-3290, 2005
38) Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, et al: ABCG2 is upregulated in Alzheimer's brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta (1-40) peptides. J Neurosci 29: 5463-5475, 2009
39) Fitz NF, Cronican AA, Saleem M, Fauq AH, Chapman R, et al: Abca1 deficiency affects Alzheimer's disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. J Neurosci 32: 13125-13136, 2012
40) Fujiyoshi M, Tachikawa M, Ohtsuki S, Ito S, Uchida Y, et al: Amyloid-beta peptide (1-40) elimination from cerebrospinal fluid involves low-density lipoprotein receptor-related protein 1 at the blood-cerebrospinal fluid barrier. J Neurochem 118: 407-415, 2011
41) Ito S, Ueno T, Ohtsuki S, Terasaki T: Lack of brain-to-blood efflux transport activity of low-density lipoprotein receptor-related protein-1 (LRP-1) for amyloid-beta peptide (1-40) in mouse: involvement of an LRP-1-independent pathway. J neurochem 113: 1356-1363, 2010
42) Akanuma S, Ohtsuki S, Doi Y, Tachikawa M, Ito S, et al: ATP-binding cassette transporter A1 (ABCA1) deficiency does not attenuate the brain-to-blood efflux transport of human amyloid-beta peptide (1-40) at the blood-brain barrier. Neurochem Int 52: 956-961, 2008
43) Ito S, Ohtsuki S, Nezu Y, Koitabashi Y, Murata S, et al: 1 alpha,25-Dihydroxyvitamin D3 enhances cerebral clearance of human amyloid-beta peptide (1-40) from mouse brain across the blood-brain barrier. Fluids Barriers CNS 8: 20, 2011
44) Kasai Y, Tachikawa M, Hirose S, Akanuma S, Hosoya K: Transport systems of serine at the brain barriers and in brain parenchymal cells. J Neurochem 118: 304-313, 2011
45) Hiramatsu M: A role for guanidino compounds in the brain. Mol Cell Biochem 244: 57-62, 2003
46) Tachikawa M, Fujinawa J, Takahashi M, Kasai Y, Fukaya M, et al: Expression and possible role of creatine transporter in the brain and at the blood-cerebrospinal fluid barrier as a transporting protein of guanidinoacetate, an endogenous convulsant. J Neurochem 107: 768-778, 2008
47) Tachikawa M, Kasai Y, Yokoyama R, Fujinawa J, Ganapathy V, et al: The blood-brain barrier transport and cerebral distribution of guanidinoacetate in rats: involvement of creatine and taurine transporters. J Neurochem 111: 499-509, 2009
48) Tachikawa M, Kasai Y, Takahashi M, Fujinawa J, Kitaichi K, et al: The blood-cerebrospinal fluid barrier is a major pathway of cerebral creatinine clearance: involvement of transporter-mediated process. J Neurochem 107: 432-442, 2008
49) Feldmann M, Koepp M: P-glycoprotein imaging in temporal lobe epilepsy: in vivo PET experiments with the Pgp substrate [11C]-verapamil. Epilepsia 53: 60-63, 2012
50) Zibell G, Unkruer B, Pekcec A, Hartz AM, Bauer B, et al: Prevention of seizure-induced up-regulation of endothelial P-glycoprotein by COX-2 inhibition. Neuropharmacology 56: 849-855, 2009
51) Cannon RE, Peart JC, Hawkins BT, Campos CR, Miller DS: Targeting blood-brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain. Proc Natl Acad Sci U S A 109: 15930-15935, 2012
52) Takashima T, Yokoyama C, Mizuma H, Yamanaka H, Wada Y, et al: Developmental changes in P-glycoprotein function in the blood-brain barrier of nonhuman primates: PET study with R-11C-verapamil and 11C-oseltamivir. J Nucl Med 52: 950-957, 2011
53) Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, et al: Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19: 1872-1874, 2005
54) Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, et al: Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Mol Pharm 10: 289-296, 2013
55) Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, et al: Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30: 783-791, 2012
56) Uchida Y, Ohtsuki S, Kamiie J, Terasaki T: Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther 339: 579-588, 2011
57) Ohtsuki S, Uchida Y, Kubo Y, Terasaki T: Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 100: 3547-3559, 2011
58) Farrell CL, Pardridge WM: Ultrastructural localization of blood-brain barrier-specific antibodies using immunogold-silver enhancement techniques. J Neurosci Methods 37: 103-110, 1991
59) Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR: Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol 273: E207-E213, 1997
60) Tsuji A, Terasaki T, Takabatake Y, Tenda Y, Tamai I, et al: P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci 51: 1427-1437, 1992
61) Cooray HC, Blackmore CG, Maskell L, Barrand MA: Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13: 2059-2063, 2002
62) Hori S, Ohtsuki S, Tachikawa M, Kimura N, Kondo T, et al: Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J Neurochem 90: 526-536, 2004
63) Leggas M, Adachi M, Scheffer GL, Sun D, Wielinga P, et al: Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 24: 7612-7621, 2004
64) Mori S, Takanaga H, Ohtsuki S, Deguchi T, Kang YS, et al: Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J Cereb Blood Flow Metab 23: 432-440, 2003
65) Gao B, Stieger B, Noe B, Fritschy JM, Meier PJ: Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. T J Histochem Cytochem 47: 1255-1264, 1999
66) Tetsuka K, Takanaga H, Ohtsuki S, Hosoya K, Terasaki T: The l-isomer-selective transport of aspartic acid is mediated by ASCT2 at the blood-brain barrier. J Neurochem 87: 891-901, 2003
67) Yamazaki M, Fukuoka H, Nagata O, Kato H, Ito Y, et al: Transport mechanism of an H1-antagonist at the blood-brain barrier: transport mechanism of mepyramine using the carotid injection technique. Biol Pharm Bull 17: 676-679, 1994
68) Smith QR, Takasato Y, Rapoport SI: Kinetic analysis of L-leucine transport across the blood-brain barrier. Brain Res 311: 167-170, 1984
69) Smith QR, Momma S, Aoyagi M, Rapoport SI: Kinetics of neutral amino acid transport across the blood-brain barrier. Brain Res 311: 167-170, 1984
70) Wade LA, Katzman R: Synthetic amino acids and the nature of L-DOPA transport at the blood-brain barrier. J Neurochem 25: 837-842, 1975
71) Pardridge WM: Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol 28: 25-39, 1988
72) Ito S, Ohtsuki S, Terasaki T: Functional characterization of the brain-to-blood efflux clearance of human amyloid-beta peptide (1-40) across the rat blood-brain barrier. Neurosci Res 56: 246-252, 2006

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら