icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩65巻2号

2013年02月発行

特集 血液脳関門研究の進歩

血液脳関門と神経免疫疾患

著者: 清水文崇1 神田隆1

所属機関: 1山口大学大学院医学系研究科神経内科

ページ範囲:P.165 - P.176

文献概要

はじめに

 微小循環系は循環器系の最終目的である物質交換のなされる場である。血液成分から組織への必要物質の移行と老廃物の回収を円滑に行うため,多くの微小循環系の血管内皮細胞は有窓であるが,体内の限られた部位では微小血管内皮細胞は隣接する細胞間でタイトジャンクションを構成し,物質の自由な往来を制限している。これを血液組織関門(blood-tissue barrier)といい,血液網膜関門(blood-retinal barrier),血液神経関門(blood-nerve barrier)など多数のバリアーシステムが存在する。なかでも中枢神経系におけるバリアーシステムは,脳の内部環境を維持するうえで極めて重要であり,血液脳関門(blood-brain barrier)がそれに当たる。血液脳関門の本体は脳微小血管を構成する内皮細胞である(Fig.1)1,2)

 多発性硬化症(multiple sclerosis:MS),視神経脊髄炎,中枢神経ループスなどのさまざまな自己免疫性神経疾患で,血液脳関門の破壊は最も初期に起こる病理学的現象であると考えられている。MSは中枢神経系髄鞘を標的とする自己免疫疾患であるが,病的T細胞が脳内に侵入し増殖するためには血液脳関門を通過する必要がある。視神経脊髄炎では近年,特異的な自己抗体として抗アクアポリン4(aquaporin 4:AQP4)抗体が同定され,同抗体によるアストロサイト傷害が病態形成に重要なプロセスであると考えられている3)。しかし,同抗体の中枢神経内流入は血液脳関門の存在を抜きには議論できない。また,近年急速に普及したMRIは,自己免疫性神経疾患の早期診断や活動性の評価を可能とし,“血液脳関門の破壊”という現象をわれわれの前に提示してくれるようになった。

 自己免疫性神経疾患における血液脳関門破壊を,単に中枢神経内の炎症に引き続いて現れる二次的な現象ではなく,脳内の免疫現象を調節するインターフェースの破綻と捉え,自己免疫性神経疾患において血液脳関門を制御するという観点から有効かつ効果的な治療法を探るのが本稿の目的である。

参考文献

1) Engelhardt B: T cell migration into the central nervous system during health and disease: different molecular keys allow access to different central nervous system compartments. Clin Exp Neuroimmunol 1: 79-93, 2010
2) Zlokovic BV: The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57: 178-201, 2008
3) Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, et al: A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 264: 2106-2112, 2004
4) Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, et al: Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis: pathogenetic and clinical implications. Brain 113: 1477-1489, 1990
5) Alvarez JI, Cayrol R, Prat A: Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 1812: 252-264, 2011
6) Takeshita Y, Ransohoff RM: Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models. Immunol Rev 248: 228-239, 2012
7) Ley K, Laudanna C, Cybulsky MI, Nourshargh S: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7: 678-689, 2007
8) Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood-brain barrier. Neurobiol Dis 37: 13-25, 2010
9) Förster C, Burek M, Romero IA, Weksler B, Couraud PO, et al: Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood-brain barrier. J Physiol 586: 1937-1349, 2008
10) Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR: VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A 106: 1977-1982, 2009
11) Shimizu F, Sano Y, Abe MA, Maeda T, Ohtsuki S, et al: Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol 226: 255-266, 2011
12) Minagar A, Ostanin D, Long AC, Jennings M, Kelley RE, et al: Serum from patients with multiple sclerosis downregulates occludin and VE-cadherin expression in cultured endothelial cells. Mult Scler 9: 235-238, 2003
13) Plumb J, McQuaid S, Mirakhur M, Kirk J: Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 12: 154-169, 2002
14) Kirk J, Plumb J, Mirakhur M, McQuaid S: Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol 201: 319-327, 2003
15) McQuaid S, Cunnea P, McMahon J, Fitzgerald U: The effects of blood-brain barrier disruption on glial cell function in multiple sclerosis. Biochem Soc Trans 37: 329-331, 2009
16) Leech S, Kirk J, Plumb J, McQuaid S: Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis. Neuropathol Appl Neurobiol 33: 86-98, 2007
17) Burnham JA, Wright RR, Dreisbach J, Murray RS: The effect of high-dose steroids on MRI gadolinium enhancement in acute demyelinating lesions. Neurology 41: 1349-1354, 1991
18) Calabresi PA, Tranquill LR, Dambrosia JM, Stone LA, Maloni H, et al: Increases in soluble VCAM-1 correlate with a decrease in MRI lesions in multiple sclerosis treated with interferon beta-1b. Ann Neurol 41: 669-674, 1997
19) Huynh HK, Oger J, Dorovini-Zis K: Interferon-beta downregulates interferon-gamma-induced class II MHC molecule expression and morphological changes in primary cultures of human brain microvessel endothelial cells. J Neuroimmunol 60: 63-73, 1995
20) Stüve O, Dooley NP, Uhm JH, Antel JP, Francis GS, et al: Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9.Ann Neurol 40: 853-863, 1996
21) Kraus J, Ling AK, Hamm S, Voigt K, Oschmann P, et al: Interferon-beta stabilizes barrier characteristics of brain endothelial cells in vitro. Ann Neurol 56: 192-205, 2004
22) Kraus J, Voigt K, Schuller AM, Scholz M, Kim KS, et al: Interferon-beta stabilizes barrier characteristics of the blood-brain barrier in four different species in vitro. Mult Scler 14: 843-852, 2008
23) Engelhardt B, Kappos L: Natalizumab: targeting alpha4-integrins in multiple sclerosis. Neurodegener Dis 5: 16-22, 2008
24) Polman CH, O'Connor PW, Havrdova E, Hutchinson M, Kappos L, et al: A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354: 899-910, 2006
25) Clifford DB, De Luca A, Simpson DM, Arendt G, Giovannoni G, et al: Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol 9: 438-446, 2010
26) Yousry TA, Major EO, Ryschkewitsch C, Fahle G, Fischer S, et al: Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 354: 924-933, 2006
27) Warnke C, Menge T, Hartung HP, Racke MK, Cravens PD, et al: Natalizumab and progressive multifocal leukoencephalopathy: what are the causal factors and can it be avoided? Arch Neurol 67: 923-930, 2010
28) Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, et al: Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362: 402-415, 2010
29) Hannun YA, Obeid LM: Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9: 139-150, 2008
30) Sanchez T, Estrada-Hernandez T, Paik JH, Wu MT, Venkataraman K, et al: Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J Biol Chem 278: 47281-47290, 2003
31) Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, et al: Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 69: 119-129, 2011
32) Devic E: Myélite subaigue compliquée de névrite optique. Bull Med 8: 1033, 1894
33) Okinaka S, Tsubaki T, Kuroiwa Y, Toyokura Y, Imamura Y: Multiple sclerosis and allied diseases in Japan: clinical characteristics. Neurology 8: 756-763, 1958
34) Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR: IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202: 473-477, 2005
35) Takahashi T, Fujihara K, Nakashima I, Misu T, Miyazawa I, et al: Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain 130: 1235-1243, 2007
36) Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, et al: Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 66: 630-643, 2009
37) Sharma R, Fischer MT, Bauer J, Felts PA, Smith KJ, et al: Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol 120: 223-236, 2010
38) Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, et al: Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133: 349-361, 2010
39) Isobe N, Yonekawa T, Matsushita T, Kawano Y, Masaki K, et al: Quantitative assays for anti-aquaporin-4 antibody with subclass analysis in neuromyelitis optica. Mult Scler 18: 1541-1551, 2012
40) Nishiyama S, Ito T, Misu T, Takahashi T, Kikuchi A, et al: A case of NMO seropositive for aquaporin-4 antibody more than 10 years before onset. Neurology 72: 1960-1961, 2009
41) Sano Y, Shimizu F, Abe M, Maeda T, Kashiwamura Y, et al: Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. J Cell Physiol 225: 519-528, 2010
42) Shimizu F, Sano Y, Takahashi T, Haruki H, Saito K, et al: Sera from neuromyelitis optica patients disrupt the blood-brain barrier. J Neurol Neurosurg Psychiatry 83: 288-297, 2012
43) Kim SM, Waters P, Vincent A, Go MJ, Park KS, et al: Cerebrospinal fluid/serum gradient of IgG is associated with disability at acute attacks of neuromyelitis optica. J Neurol 258: 2176-2180, 2011
44) Uzawa A, Mori M, Arai K, Sato Y, Hayakawa S, et al: Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6.Mult Scler 16: 1443-1452, 2010
45) Keegan M, Pineda AA, McClelland RL, Darby CH, Rodriguez M, et al: Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology 58: 143-146, 2002
46) Ruprecht K, Klinker E, Dintelmann T, Rieckmann P, Gold R: Plasma exchange for severe optic neuritis: treatment of 10 patients. Neurology 63: 1081-1083, 2004
47) Watanabe S, Misu T, Miyazawa I, Nakashima I, Shiga Y, et al: Low-dose corticosteroids reduce relapses in neuromyelitis optica: a retrospective analysis. Mult Scler 13: 968-974, 2007
48) Mandler RN, Ahmed W, Dencoff JE: Devic's neuromyelitis optica: a prospective study of seven patients treated with prednisone and azathioprine. Neurology 51: 1219-1220, 1998
49) Kleiter I, Hellwig K, Berthele A, Kümpfel T, Linker RA, et al: Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch Neurol 69: 239-245, 2012
50) Harris EN, Hughes GR: Cerebral disease in systemic lupus erythematosus. Springer Semin Immunopathol 8: 251-266, 1985
51) DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, et al: A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 7:1189-1193, 2001
52) Fragoso-Loyo H, Cabiedes J, Orozco-Narváez A, Dávila-Maldonado L, Atisha-Fregoso Y, et al: Serum and cerebrospinal fluid autoantibodies in patients with neuropsychiatric lupus erythematosus: implications for diagnosis and pathogenesis. PLoS One 3: 3347, 2008
53) Yoshio T, Onda K, Nara H, Minota S: Association of IgG anti-NR2 glutamate receptor antibodies in cerebrospinal fluid with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 54: 675-678, 2006
54) Kowal C, Degiorgio LA, Lee JY, Edgar MA, Huerta PT, et al: Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc Natl Acad Sci U S A 103: 19854-19859, 2006
55) Kowal C, DeGiorgio LA, Nakaoka T, Hetherington H, Huerta PT, et al: Cognition and immunity: antibody impairs memory. Immunity 21: 179-188, 2004
56) McLean BN, Miller D, Thompson EJ: Oligoclonal banding of IgG in CSF, blood-brain barrier function, and MRI findings in patients with sarcoidosis, systemic lupus erythematosus, and Behçet's disease involving the nervous system. J Neurol Neurosurg Psychiatry 58: 548-554, 1995
57) Yoshio T, Onda K, Nara H, Minota S: Association of IgG anti-NR2 glutamate receptor antibodies in cerebrospinal fluid with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 54: 675-678, 2006

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら