1) Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH: The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14: 1481-1486, 2004
2) Stephan FK, Zucker I: Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69: 1583-1586, 1972
3) Moore RY, Eichler VB: Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42: 201-206, 1972
4) Ralph MR, Foster RG, Davis FC, Menaker M: Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975-978, 1990
5) Green DJ, Gillette R: Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245: 198-200, 1982
6) Yamazaki S, Takahashi JS: Real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol 393: 288-301, 2005
7) Welsh DK, Logothetis DE, Meister M, Reppert SM: Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14: 697-706, 1995
8) Herzog ED, Takahashi JS, Block GD: Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat Neurosci 1: 708-713, 1998
9) Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, et al: Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129: 605-616, 2007
10) Webb AB, Angelo N, Huettner JE, Herzog ED: Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci U S A 106: 16493-16498, 2009
11) Lee JE, Atkins N Jr, Hatcher NG, Zamdborg L, Gillette MU, et al: Endogenous peptide discovery of the rat circadian clock: a focused study of the suprachiasmatic nucleus by ultrahigh performance tandem mass spectrometry. Mol Cell Proteomics 9: 285-297, 2010
12) Abrahamson EE, Moore RY: Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916: 172-191, 2001
13) Maywood ES, Chesham JE, O'Brien JA, Hastings MH: A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci U S A 108: 14306-14311, 2011
14) Li JD, Burton KJ, Zhang C, Hu SB, Zhou QY: Vasopressin receptor V1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei. Am J Physiol Regul Integr Comp Physiol 296: R824-830, 2009
15) Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, et al: Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342: 85-90, 2013
16) An S, Harang R, Meeker K, Granados-Fuentes D, Tsai CA, et al: A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. Proc Natl Acad Sci U S A 110: E4355-4361, 2013
17) Deurveilher S, Semba K: Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130: 165-183, 2005
18) Silver R, LeSauter J, Tresco PA, Lehman MN: A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382: 810-813, 1996
19) Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, et al: Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103: 1009-1017, 2000
20) DeBruyne JP, Weaver DR, Reppert SM: CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10: 543-545, 2007
21) Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, et al: Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105: 683-694, 2001
22) Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, et al: Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30: 525-536, 2001
23) Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, et al: Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2.Proc Natl Acad Sci U S A 96: 12114-12119, 1999
24) van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, et al: Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398: 627-630, 1999
25) Balsalobre A, Damiola F, Schibler U: A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93: 929-937, 1998
26) Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA: Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14: 2289-2295, 2004
27) Etchegaray JP, Lee C, Wade PA, Reppert SM: Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421: 177-182, 2003
28) Ripperger JA, Schibler U: Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38: 369-374, 2006
29) Katada S, Sassone-Corsi P: The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17: 1414-1421, 2010
30) DiTacchio L, Le HD, Vollmers C, Hatori M, Witcher M, et al: Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333: 1881-1885, 2011
31) Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, et al: SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328, 2008
-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134: 329-340, 2008
33) Duong HA, Robles MS, Knutti D, Weitz CJ: A molecular mechanism for circadian clock negative feedback. Science 332: 1436-1439, 2011
34) Duong HA, Weitz CJ: Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat Struct Mol Biol 21: 126-132, 2014
35) Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, et al: mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98: 193-205, 1999
36) Chen R, Schirmer A, Lee Y, Lee H, Kumar V, et al: Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell 36: 417-430, 2009
37) Padmanabhan K, Robles MS, Westerling T, Weitz CJ: Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337: 599-602, 2012
38) Lin C, Todo T: The cryptochromes. Genome Biol 6: 220, 2005
39) Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang RP, et al: Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 35: 13871-13877, 1996
40) Hitomi K, DiTacchio L, Arvai AS, Yamamoto J, Kim ST, et al: Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes. Proc Natl Acad Sci U S A 106: 6962-6967, 2009
41) Froy O, Chang DC, Reppert SM: Redox potential: differential roles in dCRY and mCRY1 functions. Curr Biol 12: 147-152, 2002
42) McIntosh BE, Hogenesch JB, Bradfield CA: Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu Rev Physiol 72: 625-645, 2010
43) Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA, et al: NPAS2: a gas-responsive transcription factor. Science 298: 2385-2387, 2002
44) Yang J, Kim KD, Lucas A, Drahos KE, Santos CS, et al: A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2.Mol Cell Biol 28: 4697-4711, 2008
45) Lukat-Rodgers GS, Correia C, Botuyan MV, Mer G, Rodgers KR: Heme-based sensing by the mammalian circadian protein CLOCK. Inorg Chem 49: 6349-6365, 2010
46) Kaasik K, Lee CC: Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430: 467-471, 2004
47) Kitanishi K, Igarashi J, Hayasaka K, Hikage N, Saiful I, et al: Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. Biochemistry 47: 6157-6168, 2008
48) Hayasaka K, Kitanishi K, Igarashi J, Shimizu T: Heme-binding characteristics of the isolated PAS-B domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. Biochim Biophys Acta 1814: 326-333, 2011
49) Ye R, Selby CP, Ozturk N, Annayev Y, Sancar A: Biochemical analysis of the canonical model for the mammalian circadian clock. J Biol Chem 286: 25891-25902, 2011
50) Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, et al: Crystal structure of the heterodimeric CLOCK: BMAL1 transcriptional activator complex. Science 337: 189-194, 2012
51) Hennig S, Strauss HM, Vanselow K, Yildiz O, Schulze S, et al: Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2.PLOS Biol 7: e94, 2009
52) Kucera N, Schmalen I, Hennig S, Ollinger R, Strauss HM, et al: Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc Natl Acad Sci U S A 109: 3311-3316, 2012
53) Czarna A, Berndt A, Singh HR, Grudziecki A, Ladurner AG, et al: Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 153: 1394-1405, 2013
54) Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, et al: SCF (FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496: 64-68, 2013
55) Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, et al: Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5: 1062-1065, 1999
56) Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, et al: Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434: 640-644, 2005
57) Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, et al: An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291: 1040-1043, 2001
58) Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, et al: Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288: 483-492, 2000
59) Shirogane T, Jin J, Ang XL, Harper JW: SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J Biol Chem 280: 26863-26872, 2005
60) Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, et al: Control of mammalian circadian rhythm by CKIε-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 25: 2795-2807, 2005
61) Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, et al: Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58: 78-88, 2008
62) Gallego M, Eide EJ, Woolf MF, Virshup DM, Forger DB: An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc Natl Acad Sci U S A 103: 10618-10623, 2006
63) Isojima Y, Nakajima M, Ukai H, Fujishima H, Yamada RG, et al: CKIε/δ-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci U S A 106: 15744-15749, 2009
64) Chen Z, Yoo SH, Park YS, Kim KH, Wei S, et al: Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc Natl Acad Sci U S A 109: 101-106, 2012
65) Flotow H, Graves PR, Wang AQ, Fiol CJ, Roeske RW, et al: Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem 265: 14264-14269, 1990
66) Vanselow K, Vanselow JT, Westermark PO, Reischl S, Maier B, et al: Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev 20: 2660-2672, 2006
67) Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, et al: Modeling of a human circadian mutation yields insights into clock regulation by PER2.Cell 128: 59-70, 2007
68) Chiu JC, Ko HW, Edery I: NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed. Cell 145: 357-370, 2011
69) Querfurth C, Diernfellner AC, Gin E, Malzahn E, Hofer T, et al: Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. Mol Cell 43: 713-722, 2011
70) Siepka SM, Yoo SH, Park J, Song W, Kumar V, et al: Circadian mutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression. Cell 129: 1011-1023, 2007
71) Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, et al: SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316: 900-904, 2007
72) Godinho SI, Maywood ES, Shaw L, Tucci V, Barnard AR, et al: The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316: 897-900, 2007
73) Gao P, Yoo SH, Lee KJ, Rosensweig C, Takahashi JS, et al: Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length. J Biol Chem 288: 35277-35286, 2013
74) Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, et al: AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326: 437-440, 2009
75) Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, et al: FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152: 1106-1118, 2013
76) Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, et al: Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152: 1091-1105, 2013
77) Hirota T, Lee JW, St John PC, Sawa M, Iwaisako K, et al: Identification of small molecule activators of cryptochrome. Science 337: 1094-1097, 2012