icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩68巻8号

2016年08月発行

総説

大脳新皮質の層形成過程におけるリーリンの役割

著者: 仲嶋一範1

所属機関: 1慶應義塾大学医学部解剖学教室

ページ範囲:P.931 - P.937

文献概要

リーリンは,大脳新皮質のインサイド・アウト様式での層形成を制御する。リーリンは主に辺縁帯のカハール・レチウス細胞から分泌され,移動してきたニューロンを停止させてインサイド・アウト様式での細胞凝集を引き起こす。また,インテグリンやNカドヘリンを介して移動の最終ステップを制御する。さらに,移動途中の脳室下帯付近にも発現しており,移動ニューロンの動態制御に関わる。

参考文献

1)D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, et al: A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374: 719-723, 1995
2)Honda T, Kobayashi K, Mikoshiba K, Nakajima K: Regulation of cortical neuron migration by the Reelin signaling pathway. Neurochem Res 36: 1270-1279, 2011
3)Sekine K, Kubo K, Nakajima K: How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex? Neurosci Res 86: 50-58, 2014
4)Folsom TD, Fatemi SH: The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 68: 122-135, 2013
5)Tabata H, Kanatani S, Nakajima K: Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb Cortex 19: 2092-2105, 2009
6)Chu J, Anderson SA: Development of cortical interneurons. Neuropsychopharmacology 40: 16-23, 2015
7)Kanatani S, Honda T, Aramaki M, Hayashi K, Kubo K, et al: The COUP-TFII/Neuropilin-2 is a molecular switch steering diencephalon-derived GABAergic neurons in the developing mouse brain. Proc Natl Acad Sci U S A 112: E4985-E4994, 2015
8)仲嶋一範: 発生期大脳皮質における移動神経細胞のダイナミクス. ブレインサイエンス振興財団 伊藤正男, 川合述史(編): ブレインサイエンス・レビュー2009. クバプロ, 東京, 2009, pp207-232
9)Dehay C, Kennedy H, Kosik KS: The outer subventricular zone and primate-specific cortical complexification. Neuron 85: 683-694, 2015
10)Tabata H, Yoshinaga S, Nakajima K: Cytoarchitecture of mouse and human subventricular zone in developing cerebral neocortex. Exp Brain Res 216: 161-168, 2012
11)Yozu M, Tabata H, Nakajima K: Birth-date dependent alignment of GABAergic neurons occurs in a different pattern from that of non-GABAergic neurons in the developing mouse visual cortex. Neurosci Res 49: 395-403, 2004
12)Hevner RF, Daza RA, Englund C, Kohtz J, Fink A: Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration. Neuroscience 124: 605-618, 2004
13)Tabata H, Nakajima K: Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23: 9996-10001, 2003
14)Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR: Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7: 136-144, 2004
15)Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL: Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4: 143-150, 2001
16)Hansen DV, Lui JH, Parker PR, Kriegstein AR: Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464: 554-561, 2010
17)Sekine K, Honda T, Kawauchi T, Kubo K, Nakajima K: The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent “inside-out” lamination in the neocortex. J Neurosci 31: 9426-9439, 2011
18)Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, et al: The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical-neurons. Neuron 14: 899-912, 1995
19)Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, et al: Reelin binds α3β1 integrin and inhibits neuronal migration. Neuron 27: 33-44, 2000
20)Magdaleno SM, Curran T: Brain development: integrins and the Reelin pathway. Curr Biol 11: R1032-R1035, 2001
21)Belvindrah R, Hankel S, Walker J, Patton BL, Muller U: β1 integrins control the formation of cell chains in the adult rostral migratory stream. J Neurosci 27: 2704-2717, 2007
22)Arnaud L, Ballif BA, Forster E, Cooper JA: Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr Biol 13: 9-17, 2003
23)Simo S, Cooper JA: Rbx2 regulates neuronal migration through different cullin 5-RING ligase adaptors. Dev Cell 27: 399-411, 2013
24)Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, et al: Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons. Development 134: 3883-3891, 2007
25)Hirota Y, Kubo K, Katayama K, Honda T, Fujino T, et al: Reelin Receptors ApoER2 and VLDLR are expressed in distinct spatiotemporal patterns in developing mouse cerebral cortex. J Comp Neurol 523: 463-478, 2015
26)Tabata H, Nakajima K: Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103: 865-872, 2001
27)Tabata H, Nakajima K: Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev Growth Differ 50: 507-511, 2008
28)Kubo K, Honda T, Tomita K, Sekine K, Ishii K, et al: Ectopic Reelin induces neuronal aggregation with a normal birthdate-dependent “inside-out” alignment in the developing neocortex. J Neurosci 30: 10953-10966, 2010
29)Ajioka I, Nakajima K: Birth-date-dependent segregation of the mouse cerebral cortical neurons in reaggregation cultures. Eur J Neurosci 22: 331-342, 2005
30)Franco SJ, Martinez-Garay I, Gil-Sanz C, Harkins-Perry SR, Muller U: Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69: 482-497, 2011
31)Sekine K, Kawauchi T, Kubo K, Honda T, Herz J, et al: Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin α5β1. Neuron 76: 353-369, 2012
32)Tachikawa K, Sasaki S, Maeda T, Nakajima K: Identification of molecules preferentially expressed beneath the marginal zone in the developing cerebral cortex. Neurosci Res 60: 135-146, 2008
33)Gil-Sanz C, Franco SJ, Martinez-Garay I, Espinosa A, Harkins-Perry S, et al: Cajal-Retzius cells instruct neuronal migration by coincidence signaling between secreted and contact-dependent guidance cues. Neuron 79: 461-477, 2013
34)Yoshida M, Assimacopoulos S, Jones KR, Grove EA: Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development 133: 537-545, 2006
35)Uchida T, Baba A, Perez-Martinez FJ, Hibi T, Miyata T, et al: Downregulation of functional Reelin receptors in projection neurons implies that primary Reelin action occurs at early/premigratory stages. J Neurosci 29: 10653-10662, 2009
36)Britto JM, Tait KJ, Johnston LA, Hammond VE, Kalloniatis M, et al: Altered speeds and trajectories of neurons migrating in the ventricular and subventricular zones of the reeler neocortex. Cereb Cortex 21: 1018-1027, 2011
37)Nomura T, Takahashi M, Hara Y, Osumi N: Patterns of neurogenesis and amplitude of reelin expression are essential for making a mammalian-type cortex. PLOS ONE 3: e1454, 2008
38)Jossin Y, Cooper JA: Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat Neurosci 14: 697-703, 2011
39)Forster E: Reelin, neuronal polarity and process orientation of cortical neurons. Neuroscience 269: 102-111, 2014
40)Kohno T, Honda T, Kubo K, Nakano Y, Tsuchiya A, et al: Importance of Reelin C-terminal region in the development and maintenance of the postnatal cerebral cortex and its regulation by specific proteolysis. J Neurosci 35: 4776-4787, 2015
41)Sibbe M, Kuner E, Althof D, Frotscher M: Stem- and progenitor cell proliferation in the dentate gyrus of the reeler mouse. PLOS ONE 10: e0119643, 2015
42)Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, et al: Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47: 567-579, 2005
43)Qiu S, Zhao LF, Korwek KM, Weeber EJ: Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus. J Neurosci 26: 12943-12955, 2006

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら