1)日本精神神経学会(日本語版用語監修), 髙橋三郎, 大野 裕(監訳): DSM-5®精神疾患の診断・統計マニュアル. 医学書院, 東京, 2014
2)原 聖吾, 藤田卓仙: 精神医学における機械・深層学習技術活用の可能性. 精神医学60: 69-73, 2018
3)Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, et al: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542: 115-118, 2017
4)Videbech P, Ravnkilde B: Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161: 1957-1966, 2004
5)Schmaal L, Veltman DJ, van Erp TG, Sämann PG, Frodl T, et al: Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry 21: 806-812, 2016
6)Arbabshirani MR, Plis S, Sui J, Calhoun VD: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage 145: 137-165, 2017
7)Mwangi B, Ebmeier KP, Matthews K, Steele JD: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain 135: 1508-1521, 2012
8)Angst J, Sellaro R: Historial perspectives and natural history of bipolar disorder. Biol Psychiatry 48: 445-457, 2000
9)日本うつ病学会気分障害の治療ガイドライン作成委員会: 日本うつ病学会治療ガイドライン Ⅱ. うつ病(DMS-5)/大うつ病性障害2016. 2016 http://www.secretariat.ne.jp/jsmd/mood_disorder/img/160731.pdf(最終閲覧日2018年11月1日)
10)Redlich R, Almeida JJ, Grotegerd D, Opel N, Kugel H, et al: Brain morphometric biomarkers distinguishing unipolar and bipolar depression. A voxel-based morphometry-pattern classification approach. JAMA Psychiatry 71: 1222-1230, 2014
11)Koutsouleris N, Meisenzahl EM, Borgwardt S, Riecher-Rössler A, Frodl T, et al: Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers. Brain 138: 2059-2073, 2015
12)Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, et al: Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23: 28-38, 2017
13)Dinga R, Schmaal L, Penninx B, van Tol MJ, Veltman D, et al: Evaluating the evidence for biotypes of depression: attempted replication of Drysdale et. al. 2017. BioRxiv September 14, 2018[doi: https://doi.org/10.1101/416321]
14)Gao S, Calhoun VD, Sui J: Machine learning in major depression: from classification to treatment outcome prediction. CNS Neurosci Ther 24: 1037-1052, 2018
15)Kellner CH, Greenberg RM, Murrough JW, Bryson EO, Briggs MC, et al: ECT in Treatment-resistant depression. Am J Psychiatry 169: 1238-1244, 2012
16)van Diermen L, van den Ameele S, Kamperman AM, Sabbe BCG, Vermeulen T, et al: Prediction of electroconvulsive therapy response and remission in major depression: meta-analysis. Br J Psychiatry 212: 71-80, 2018
17)Redlich R, Opel N, Grotegerd D, Dohm K, Zaremba D, et al: Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiatry 73: 557-564, 2016
18)Joshi J, Goecke R, Alghowinem S, Dhall A, Wagner M, et al: Multimodal assistive technologies for depression diagnosis and monitoring. J Multimodal User Interfaces 7: 217-228, 2013
19)Mackintosh JH, Kumar R, Kitamura T: Blink rate in psychiatric illness. Br J Psychiatry 143: 55-57, 1983
20)Alghowinem S, Goecke R, Wagner M, Parkerx G, Breakspear M: Head Pose and Movement Analysis as an Indicator of Depression. 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. IEEE Computer Society, Washington DC, 2013, pp283-288
21)Cummins N, Scherer S, Krajewski J, Schnieder S, Epps J, et al: A review of depression and suicide risk assessment using speech analysis. Speech Communication 71: 10-49, 2015
22)Faedda GL, Ohashi K, Hernandez M, McGreenery CE, Grant MC, et al: Actigraph measures discriminate pediatric bipolar disorder from attention-deficit/hyperactivity disorder and typically developing controls. J Child Psychol Psychiatry 57: 706-716, 2016
23)Valenza G, Nardelli M, Lanatà A, Gentili C, Bertschy G, et al: Wearable monitoring for mood recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis. IEEE J Biomed Health Inform 18: 1625-1635, 2014
24)Bedi G, Carrillo F, Cecchi GA, Slezak DF, Sigman M, et al: Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophr 1: 15030, 201[doi: 10.1038/npjschz.2015.30]
25)Corcoran CM, Carrillo F, Fernández-Slezak D, Bedi G, Klim C, et al: Prediction of psychosis across protocols and risk cohorts using automated language analysis. World Psychiatry 17: 67-75, 2018