icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩71巻12号

2019年12月発行

総説

脳が左右非対称にはたらく神経メカニズム

著者: 島崎宇史1 小田洋一1

所属機関: 1名古屋大学大学院理学研究科

ページ範囲:P.1409 - P.1417

文献概要

われわれの体と神経系はほぼ左右対称な構造となっているが,利き手で精巧な作業をしたり両手でピアノを弾く場合など,左右非対称な動作をすることがしばしば見られる。この当たり前の動作をコントロールしているのは,左右非対称にはたらく脳や脊髄である。これまでその神経機構は多くが未知のままだったが,最近,左右脳間の相互抑制回路が細胞レベルで同定され,左右非対称な運動に重要な役割を果たすことが明らかにされた。

参考文献

1)Finnerty JR: Did internal transport, rather than directed locomotion, favor the evolution of bilateral symmetry in animals? Bioessays 27: 1174-1180, 2005
2)Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ: Origins of bilateral symmetry: hox and dpp expression in a sea anemone. Science 304: 1335-1337, 2004
3)Li Y, Zhao D, Horie T, Chen G, H. Bao H, et al: Conserved gene regulatory module specifies lateral neural borders across bilaterians. Proc Natl Acad Sci U S A 114: E6352-E6360, 2017[doi: 10.1073/pnas.1704194114]
4)Heglund NC, Taylor CR, McMahon TA: Scaling stride frequency and gait to animal size: mice to horses. Science 186: 1112-1113, 1974
5)Kiehn O: Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci 17: 224-238, 2016
6)Boije H, Kullander K: Origin and circuitry of spinal locomotor interneurons generating different speeds. Curr Opin Neurobiol 53: 16-21, 2018
7)Brown TG: The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of London Series B 84: 308-319, 1911
8)Brown TG: On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 48 18-46, 1914
9)Grillner S: Neurobiological bases of rhythmic motor acts in vertebrates. Science 228: 143-149, 1985
10)Grillner S, Matsushima T: The neural network underlying locomotion in lamprey-synaptic and cellular mechanisms. Neuron 7: 1-15, 1991
11)Talpalar AE, Bouvier J, Borgius L, Fortin G, Pierani A, et al: Dual-mode operation of neuronal networks involved in left-right alternation. Nature 500: 85-88, 2013
12)Chopek JW, Nascimento F, Beato M, Brownstone RM, Zhang Y: Sub-populations of spinal V3 interneurons form focal modules of layered pre-motor microcircuits. Cell Rep 25: 146-156. e3, 2018
13)Zhang Y, Narayan S, Geiman E, Lanuza GM, Velasquez T, et al: V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60: 84-96, 2008
14)Asanuma H, Okuda O: Effects of transcallosal volleys on pyramidal tract cell activity of cat. J Neurophysiol 25: 198-208, 1962
15)Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, et al: Interhemispheric inhibition of the human motor cortex. J Physiol 453 525-546, 1992
16)Welniarz Q, Dusart I, Gallea C, Roze E: One hand clapping: lateralization of motor control. Front Neuroanat 9: 75, 2015[doi: 10.3389/fnana.2015.00075]
17)Connolly K, Stratton P: Developmental changes in associated movements. Dev Med Child Neurol 10: 49-56, 1968
18)Koerte I, Eftimov L, Laubender RP, Esslinger O, Schroeder AS, etal: Mirror movements in healthy humans across the lifespan: effects of development and ageing. Dev Med Child Neurol 52: 1106-1112, 2010
19)Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ: Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain 137: 1579-1613, 2014
20)Globerson E, Nelken I: The neuro-pianist. Front Syst Neurosci 7: 35, 2013[doi: 10.3389/fnsys.2013.00035]
21)Kelso JA, Southard DL, Goodman D: On the coordination of two-handed movements. J Exp Psychol Hum Percept Perform 5: 229-238, 1979
22)Schlaug G, Jäncke L, Huang Y, Staiger JF, Steinmetz H: Increased corpus callosum size in musicians. Neuropsychologia 33: 1047-1055, 1995
23)Steele CJ, Bailey JA, Zatorre RJ, Penhune VB: Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J Neurosci 33: 1282-1290, 2013
24)Schott GD, Wyke MA: Obligatory bimanual associated movements. Report of a non-familial case in an otherwise normal left-handed boy. J Neurol Sci 33: 301-312, 1977
25)Cincotta M, Lori S, Gangemi PF, Barontini F, Ragazzoni A: Hand motor cortex activation in a patient with congenital mirror movements: a study of the silent period following focal transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 101: 240-246, 1996
26)Srour M, Rivière JB, Pham JM, Dubé MP, Girard S, et al: “Mutations in DCC cause congenital mirror movements. Science 328: 592, 2010[doi: 10.1126/science.1186463]
27)Marsh APL, Edwards TJ, Galea C, Cooper HM, Engle EC, et al: DCC mutation update: congenital mirror movements, isolated agenesis of the corpus callosum, and developmental split brain syndrome. Hum Mutat 39: 23-39, 2018
28)Beaulé V, Tremblay S, Théoret H: Interhemispheric control of unilateral movement. Neural Plast 2012: 627816, 2012[doi: 10.1155/2012/627816]
29)Demirayak P, Onat OE, Gevrekci AÖ, Gülsüner S, Uysal H, et al: Abnormal subcortical activity in congenital mirror movement disorder with RAD51 mutation. Diagn Interv Radiol 24: 392-401, 2018
30)Schott GD, Wyke MA: Congenital mirror movements. J Neurol Neurosurg Psychiatry 44: 586-599, 1981
31)Bonnet C, Roubertie A, Doummar D, Bahi-Buisson N, Cochen de Cock V, et al: Developmental and benign movement disorders in childhood. Mov Disord 25: 1317-1334, 2010
32)Welniarz Q, Dusart I, Gallea C, Roze E: One hand clapping: lateralization of motor control. Front Neuroanat 9: 75, 2015[doi: 10.3389/fnana.2015.00075]
33)Carson RG: Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Brain Res Rev 49: 641-662, 2005
34)Kobayashi M, Pascual-Leone A: Transcranial magnetic stimulation in neurology. Lancet Neurol 2: 145-156, 2003
35)Gallea C, Popa T, Hubsch C, Valabregue R, Brochard V, et al: RAD51 deficiency disrupts the corticospinal lateralization of motor control. Brain 136: 3333-3346, 2013
36)Mayston MJ, Harrison LM, Stephens JA: A neurophysiological study of mirror movements in adults and children. Ann Neurol 45: 583-594, 1999
37)Leinsinger GL, Heiss DT, Jassoy AG, Pfluger T, Hahn K, et al: Persistent mirror movements: functional MR imaging of the hand motor cortex. Radiology 203: 545-552, 1997
38)Li JY, Espay AJ, Gunraj CA, Pal PK, Cunic DI, et al: Interhemispheric and ipsilateral connections in Parkinson's disease: relation to mirror movements. Mov Disord 22: 813-821, 2007
39)Hübers A, Orekhov Y, Ziemann U: Interhemispheric motor inhibition: its role in controlling electromyographic mirror activity. Eur J Neurosci 28: 364-371, 2008
40)Pal PK, Gunraj CA, Li JY, Lang AE, Chen R: Reduced intracortical and interhemispheric inhibitions in corticobasal syndrome. J Clin Neurophysiol 25: 304-312, 2008
41)Beck S, Shamim EA, Richardson SP, Schubert M, Hallett M: Inter-hemispheric inhibition is impaired in mirror dystonia. Eur J Neurosci 29: 1634-1640, 2009
42)Poisson A, Ballanger B, Metereau E, Redouté J, Ibarolla D, et al: A functional magnetic resonance imaging study of pathophysiological changes responsible for mirror movements in Parkinson's disease. PLOS ONE 8: e66910, 2013[doi: 10.1371/journal.pone.0066910]
43)Farmer SF, Ingram DA, Stephens JA: Mirror movements studied in a patient with Klippel-Feil syndrome. J Physiol 428: 467-484, 1990
44)Farmer SF, Harrison LM, Mayston MJ, Parekh A, James LM, et al: Abnormal cortex-muscle interactions in subjects with X-linked Kallmann's syndrome and mirror movements. Brain 127: 385-397, 2004
45)Kohashi T, Oda Y: Initiation of Mauthner- or non-Mauthner-mediated fast escape evoked by different modes of sensory input. J Neurosci 28: 10641-10653, 2008
46)Zottoli SJ: Correlation of the startle reflex and Mauthner cell auditory responses in unrestrained goldfish. J Exp Biol 66: 243-254, 1977
47)Faber DS, Fetcho JR, Korn H: Neuronal networks underlying the escape response in goldfish. General implications for motor control. Ann N Y Acad Sci 563: 11-33, 1989
48)Korn H, Faber DS: The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47: 13-28, 2005
49)Furukawa T, Furshpan EJ: Two inhibitory mechanisms in the Mauthner neurons of goldfish. J Neurophysiol 26: 140-176, 1963
50)Diamond J: The Mauthner cell. Fish Physiol 5: 265-346, 1971
51)Takahashi M, Narushima M, Oda Y: In vivo imaging of functional inhibitory networks on the mauthner cell of larval zebrafish. J Neurosci 22: 3929-3938, 2002
52)Shimazaki T, Tanimoto M, Oda Y, Higashijima SI: Behavioral role of the reciprocal inhibition between a pair of Mauthner cells during fast escapes in zebrafish. J Neurosci 39: 1182-1194, 2018
53)Satou C, Kimura Y, Kohashi T, Horikawa K, Takeda H, et al: Functional role of a specialized class of spinal commissural inhibitory neurons during fast escapes in zebrafish. J Neurosci 29: 6780-6793, 2009

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら