icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩71巻7号

2019年07月発行

増大特集 人工知能と神経科学

人工知能と小脳運動学習

著者: 永雄総一1 本多武尊2

所属機関: 1希望病院・のぞみ高次脳機能研究所 2東京都医学総合研究所・運動障害プロジェクト

ページ範囲:P.665 - P.680

文献概要

半世紀前パーセプトロンを基にMarr-Albus-Ito小脳学習仮説が提案され,その検証過程で小脳学習と記憶の原因となるシナプス可塑性の長期抑圧(LTD)が発見された。小脳学習仮説は脳における深層学習の原型である液状態機械モデルへと発展し,運動のタイミングと効率の学習,運動記憶の形成や内部モデルに基づく認知機能まで拡張されつつある。パーセプトロンから発展した人工知能が今後小脳の神経科学に与える影響について論じる。

参考文献

1)Ito M, Yoshida M: The cerebellar-evoked monosynaptic inhibition of Deiters' neurones. Experientia 20: 515-516, 1964, Classics Cerebellum 6: 103-104, 2007
2)Eccles JC (ed), Ito M, Szentágothai J: The Cerebellum as a Neuronal Machine. Springer-Verlag, New York, 1967
3)Ito M: The Cerebellum and Neural Control. Raven, New York, 1984
4)Marr D: A theory of cerebellar cortex. J Physiol (Lond) 202: 437-470, 1969
5)Albus JS: A theory of cerebellar function. Mathem Biosci 10: 25-61, 1971
6)Rosenblatt F: Principles of Neurodynamics: Perceptron and the Theory of Brain Mechanisms. Spartan Books, Washington DC, 1962
7)Rumelhart DE, Hinton GE, Williams RJ: Learning representations by back-propagating errors. Nature 323: 533-536, 1986
8)Ito M: Neurophysiological aspects of the cerebellar motor control system. Int J Neurol 7: 162-176, 1970
9)Ito M: Neural design of the cerebellar motor control system. Brain Res 40: 81-84, 1972
10)Ito M: The control mechanisms of cerebellar motor control system. Schmitt FO, Worden FG (eds): The Neuroscience: Third Study Program. MIT Press, Massachusetts, 1974, pp293-303
11)Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S: Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 139: 767-777, 2006
12)Maekawa K, Simpson JI: Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual system. J Neurophysiol 36: 649-666, 1973
13)Ito M, Nisimaru N, Yamamoto M: Specific patterns of neuronal connexions involved in the control of the rabbit's vestibulo-ocular reflexes by the cerebellar flocculus. J Physiol 265: 833-854, 1977
14)Gonshor A, Jones GM: Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. J Physiol 256: 381-414, 1974
15)Ito M, Jastreboff PJ, Miyashita Y: Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Exp Brain Res 45: 233-242, 1982
16)Nagao S: Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic responses in pigmented rabbits. Exp Brain Res 53: 36-46, 1983
17)Katoh A, Kitazawa H, Itohara S, Nagao S: Dynamic characteristics and adaptability of mouse vestibulo-ocular and optokinetic response eye movements and the role of the flocculo-olivary system revealed by chemical lesions. Proc Natl Acad Sci U S A 95: 7705-7710, 1998
18)Ito M, Miyashita Y: The effect of chronic destruction of the inferior olive upon visual modification of the horizontal vestibulo-ocular reflex of rabbits. Proc Jpn Acad 51: 716-720, 1975
19)Dufossé M, Ito M, Jastreboff PJ, Miyashita Y: A neuronal correlate in rabbit's cerebellum to adaptive modification of the vestibulo-ocular reflex. Brain Res 150: 611-616, 1978
20)Watanabe E: Role of the primate flocculus in adaptation of the vestibulo-ocular reflex. Neurosci Res 3: 20-38, 1985
21)Nagao S: Behavior of floccular Purkinje cells correlated with adaptation of horizontal optokinetic eye movement response in pigmented rabbits. Exp Brain Res 73: 489-497, 1988
22)Nagao S: Behavior of floccular Purkinje cells correlated with adaptation of vestibulo-ocular reflex in pigmented rabbits. Exp Brain Res 77: 531-540, 1989
23)Nagao S: Role of cerebellar flocculus in adaptive interaction between optokinetic eye movement response and vestibulo-ocular reflex in pigmented rabbits. Exp Brain Res 77: 541-551, 1989
24)Ito M, Kano M: Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33: 253-258, 1982
25)Ito M, Sakurai M, Tongroach P: Climbing fibre induced deprestion of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324: 113-134, 1982
26)Ito M: Long-term depression. Annu Rev Neurosci 12: 85-102, 1989
27)Ito M: Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81: 1143-1195, 2001
28)Ito M, Yamaguchi K, Nagao S, Yamazaki T: Long-term depression as a model of cerebellar plasticity. Prog Brain Res 210: 1-30, 2014
29)Kano M, Kato M: Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325: 276-279, 1987
30)Wang W, Nakadate K, Masugi-Tokita M, Shutoh F, Aziz W, et al: Distinct cerebellar engrams in short-term and long-term motor learning. Proc Natl Acad Sci U S A 111: E188-E193, 2014[doi: 10.1073/pnas.1315541111]
31)Kakegawa W, Katoh A, Narumi S, Miura E, Motohashi J, et al: Optogenetic control of synaptic AMPA receptor endocytosis reveals roles of LTD in motor learning. Neuron 99: 985-998, 2018
32)Sakurai M: Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J Physiol 394: 463-480, 1987
33)Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY: Reversing cerebellar long-term depression. Proc Natl Acad Sci U S A 100: 15989-15993, 2003
34)Anzai M, Nagao S: Motor learning in the common marmosets: vestibulo-ocular reflex adaptation and its sensitivity to inhibitors of Purkinje cell long-term depression. Neurosci Res 83: 33-42, 2014
35)Fujita M: Adaptive filter model of the cerebellum. Biol Cybern 45: 195-206, 1982
36)Buonomano DV, Mauk MD: Neural network model of the cerebellum: temporal discrimination and the timing of motor responses. Neural Comput 6: 38-55, 1994
37)Yamazaki T, Tanaka S: Neural modeling of an internal clock. Neural Comput 17: 1032-1058, 2005
38)Maass W, Natschläger T, Markram H: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14: 2531-2560, 2002
39)Honda T, Ito M: H Development from Marr's theory of the cerebellum. Vaina LM, Passingham RE (eds): Computational Theories and Their Implementation in the Brain: The Legacy of David Marr. Oxford University Press, Oxford, 2017
40)Tanji J: Sequential organization of multiple movements: involvement of cortical motor areas. Annu Rev Neurosci 24: 631-651, 2001
41)Yamazaki T, Tanaka S: A spiking network model for passage-of-time representation in the cerebellum. Eur J Neurosci 26: 2279-2292, 2007
42)Honda T, Yamazaki T, Tanaka S, Nagao S, Nishino T: Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer. PLOS Comput Biol 7: e1002087, 2011[doi: 10.1371/journal.pcbi.1002087]
43)Yamazaki T, Nagao S: A computational mechanism for unified gain and timing control in the cerebellum. PLOS ONE 7: e33319, 2012[doi: 10.1371/journal.pone.0033319]
44)Fukushima K, Miyake S: Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognit 15: 455-469, 1982
45)Krizhevsky A, Sutskever I, Hinton GE: ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 1: 1097-1105, 2012
46)Vinyals O, Toshev A, Bengio S, Erhan D: Show and tell: a neural image caption generator. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3156-3164, 2015
47)Anzai M, Kitazawa H, Nagao S: Effects of reversible pharmacological shutdown of cerebellar flocculus on the memory of long-term horizontal vestibulo-ocular reflex adaptation in monkeys. Neurosci Res 68: 191-198, 2010
48)Kassardjian CD, Tan YF, Chung JY, Heskin R, Peterson MJ, et al: The site of a motor memory shifts with consolidation. J Neurosci 25: 7979-7985, 2005
49)永雄総一: 小脳の新しい学習機構:運動学習の記憶痕跡のシナプス間移動による記憶の固定化. 生体の科学63: 34-41, 2012
50)Pugh JR, Raman IM: Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron 51: 113-123, 2006
51)Zhang W, Linden DJ: Long-term depression at the mossy fiber-deep cerebellar nucleus synapse. J Neurosci 26: 6935-6944, 2006
52)Nagao S, Honda T, Yamazaki T: Transfer of memory trace of cerebellum-dependent motor learning in human prism adaptation: a model study. Neural Netw 47: 72-80, 2013
53)Yamazaki T, Nagao S, Lennon W, Tanaka S: Modeling memory consolidation during post-training periods in cerebellovestibular learning. Proc Natl Acad Sci U S A 112: 3541-3546, 2015
54)Gosui M, Yamazaki T: Real-world-time simulation of memory consolidation in a large scale cerebellar model. Front Neuroanat 10: 21, 2016[doi: 10.3899/fnana.2016.00021]
55)Ito M: Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci 16: 448-450, 1993
56)Ito M: Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9: 304-313, 2008
57)Ito M: Cerebellum: The Brain for an Implicit Self. FT Press, New York, 2011
58)Kelly RM, Strick PL: Cerebellar loops with motor cortex and prefrontal cortex of nonhuman primate. J Neurosci 23: 8432-8444, 2003
59)Craik K: The Nature of Explanation. Cambridge University Press, Cambridge, 1943
60)Honda T, Nagao S, Hashimoto Y, Ishikawa K, Yokota T, et al: Tandem internal models execute motor learning in the cerebellum. Proc Natl Acad Sci U S A 115: 7428-7433, 2018
61)Kawato M, Furukawa K, Suzuki R: A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57: 169-185, 1987
62)Wolpert DM, Kawato M: Multiple paired forward and inverse models for motor control. Neural Netw 11: 1317-1329, 1998
63)Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, et al: Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403: 192-195, 2000
64)Yamamoto K, Kawato M, Kotosaka S, Kitazawa S: Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields. J Neurophysiol 97: 1588-1599, 2007
65)Ebner TJ, Pasalar S: Cerebellum predicts the future motor state. Cerebellum 7: 583-588, 2008
66)Tomatsu S, Ishikawa T, Tsunoda Y, Lee J, Hoffman DS, et al: Information processing in the hemisphere of the cerebellar cortex for control of wrist movement. J Neurophysiol 115: 255-270, 2016
67)Holmes G: The cerebellum of man. Brain 62: 1-30, 1939
68)Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT: Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119: 1183-1198, 1996
69)Hashimoto Y, Honda T, Matsumura K, Nakao M, Soga K, et al: Quantitative evaluation of human cerebellum-dependent motor learning through prism adaptation of hand-reaching movement. PLOS ONE 10: e0119376, 2015[doi: 10.1371/journal.pone.0119376]
70)Lee J, Kagamihara Y, Tomatsu S, Kakei S: The functional role of the cerebellum in visually guided tracking movement. Cerebellum 11: 426-433, 2012
71)筧 慎治, 李 錘昊, 鏡原康裕, 本多武尊, 吉田大峰, 他: 文字のトラッキング. 宇川義一(編): 運動失調のみかた, 考えかた—小脳と脊髄小脳変性症. 中外医学社, 東京, 2017
72)Beppu H, Suda M, Tanaka R: Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain 107 (Pt 3): 787-809, 1984
73)Beppu H, Nagaoka M, Tanaka R: Analysis of cerebellar motor disorders by visually-guided elbow tracking movement. 2. Contribution of the visual cues on slow ramp pursuit. Brain 110 (Pt 1): 1-18, 1987
74)Yoshida H, Honda T, Lee J, Yano S, Kakei S, et al: Development of a system for quantitative evaluation of motor function using Kinect v2 sensor. 2016 International Symposium on Micro-nanomechatronics and Human Science (MHS): 1-6, Nagoya, 2016[doi: 10.1109/MHS.2016.7824230]
75)Nagao S, Ito M: Roles of synaptic plasticity in the functional recovery after brain injury. Petrosini L (ed): Contemporary Clinical Neuroscience, Neurobiological and Psychological Aspects of Brain Recovery. Springer, Heidelberg, Berlin, 2017, pp153-181

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら