1)Fetz EE: Operant conditioning of cortical unit activity. Science 163: 955-958, 1969
2)Nicolelis MA. Lebedev MA: Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci 10: 530-540, 2009
3)Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, et al: High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381: 557-564, 2013
4)Rehabilitation and Neural Engineering Laboratory, University of Pittsburgh: Intracortical Brain-Computer Interfaces. http://www.rnel.pitt.edu/research/neuroprosthetics/intracortical-brain-computer-interfaces(最終閲覧日:2019年6月11日)
5)Milekovic T, Sarma AA, Bacher D, Simeral JD, Saab J, et al: Stable long-term BCI-enabled communication in ALS and locked-in syndrome using LFP signals. J Neurophysiol 120: 343-360, 2018
6)Yanagisawa T, Hirata M, Saitoh Y, Kishima H, Matsushita K, et al: Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann Neurol 71: 353-361, 2012
7)Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, et al: Neural constraints on learning. Nature 512: 423-426, 2014
8)Ushiba J, Soekadar SR: Brain-machine interfaces for rehabilitation of poststroke hemiplegia. Prog Brain Res 228: 163-183, 2016
9)Nuyujukian P, Albites Sanabria J, Saab J, Pandarinath C, Jarosiewicz B, et al: Cortical control of a tablet computer by people with paralysis. PLOS ONE 13: e0204566, 2018[doi: 10.1371/journal.pone.0204566]
10)BrainGate: Publication Videos. https://www.braingate.org/publication-videos/(最終閲覧日:2019年6月11日)
11)Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, et al: Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389: 1821-1830, 2017
12)BrainGate2: Media Resources. http://engineering.case.edu/groups/BrainGate2/node/9/(最終閲覧日:2019年6月11日)
13)Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, et al: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485: 372-375, 2012
14)Kargo WJ, Nitz DA: Improvements in the signal-to-noise ratio of motor cortex cells distinguish early versus late phases of motor skill learning. J Neurosci 24: 5560-5569, 2004
15)Kondo T, Saito R, Otaka M, Yoshino-Saito K, Yamanaka A, et al: Calcium transient dynamics of neural ensembles in the primary motor cortex of naturally behaving monkeys. Cell Rep 24: 2191-2195, 2018
16)Shenoy KV, Sahani M, Churchland MM: Cortical control of arm movements: a dynamical systems perspective. Annu Rev Neurosci 36: 337-359, 2013
17)Gallego JA, Perich MG, Miller LE, Solla SA: Neural manifolds for the control of movement. Neuron 94: 978-984, 2017
18)Herson PS, Traystman RJ: Animal models of stroke: translational potential at present and in 2050. Future Neurol 9: 541-551, 2014
19)Cervera MA, Soekadar SR, Ushiba J, Millán JDR, Liu M, et al: Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol 5: 651-663, 2018
20)Langhorne P, Coupar F, Pollock A: Motor recovery after stroke: a systematic review. Lancet Neurol 8: 741-754, 2009
21)Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz Ö, et al: Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol 74: 100-108, 2013
22)Linden DE, Turner DL: Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation. Curr Opin Neurol 29: 412-418, 2016
23)Mihara M, Hattori N, Hatakenaka M, Yagura H, Kawano T, et al: Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study. Stroke 44: 1091-1098, 2013
24)Yuan H, Liu T, Szarkowski R, Rios C, Ashe J, et al: Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements. NeuroImage 49: 2596-2606, 2010
25)Tsuchimoto S, Shibusawa S, Mizuguchi N, Kato K, Ebata H, et al: Resting-state fluctuations of EEG sensorimotor rhythm reflect BOLD activities in the pericentral areas: a simultaneous EEG-fMRI study. Front Hum Neurosci 11: 356, 2017[doi: 10.3389/fnhum.2017.00356]
26)Soekadar SR, Witkowski M, Birbaumer N, Cohen LG: Enhancing hebbian learning to control brain oscillatory activity. Cereb Cortex 25: 2409-2415, 2015
27)Kasashima Y, Fujiwara T, Matsushika Y, Tsuji T, Hase K, et al: Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation (tDCS) in patients with chronic hemiparetic stroke. Exp Brain Res 221: 263-268, 2012
28)Kasashima-Shindo Y, Fujiwara T, Ushiba J, Matsushika Y, Kamatani D, et al: Brain-computer interface training combined with transcranial direct current stimulation in patients with chronic severe hemiparesis: proof of concept study. J Rehabil Med 47: 318-324, 2015
29)Takemi M, Maeda T, Masakado Y, Siebner HR, Ushiba J: Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface. NeuroImage 183: 597-605, 2018
30)Hobson HM, Bishop DV: The interpretation of mu suppression as an index of mirror neuron activity: past, present and future. R Soc Open Sci 4: 160662, 2017[doi: 10.1098/rsos.160662]
31)Pineda JA: The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Brain Res Rev 50: 57-68, 2005
32)Ono T, Tomita Y, Inose M, Ota T, Kimura A, et al: Multimodal sensory feedback associated with motor attempts alters BOLD responses to paralyzed hand movement in chronic stroke patients. Brain Topogr 28: 340-351, 2015
33)Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Khodairy A, et al: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun 9: 2421, 2018[doi: 10.1038/s41467-018-04673-z.]
34)Ono T, Shindo K, Kawashima K, Ota N, Ito M, et al: Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front Neuroeng 7: 19, 2014[doi: 10.3389/fneng.2014.00019]
35)Chaudhary U, Birbaumer N, Ramos-Murguialday A: Brain-computer interfaces in the completely locked-in state and chronic stroke. Prog Brain Res 228: 131-161, 2016
36)各都道府県衛生主管部(局)長あて厚生労働省医薬食品局審査管理課医療機器審査管理室長通知: 次世代医療機器評価指標の公表について(薬食機発1207第1号). 平成23年12月7日 https://www.mhlw.go.jp/web/t_doc?dataId=00tb7906&dataType=1&pageNo=1(最終閲覧日:2019年4月10日)
37)Muraoka Y, Tomita Y, Honda S, Tanaka N, Okajima Y: EMG-controlled hand opening system for hemiplegia. Proceeding of the 6th Vienna International Workshop on Functional Electrostimulation Basics Technology Application: 255-258, 1998
38)Meilink A, Hemmen B, Seelen HA, Kwakkel G: Impact of EMG-triggered neuromuscular stimulation of the wrist and finger extensors of the paretic hand after stroke: a systematic review of the literature. Clin Rehabil 22: 291-305, 2008
39)Fujiwara T, Liu M, Hase K, Tanaka N, Hara Y: Electrophysiological and clinical assessment of a simple wrist-hand splint for patients with chronic spastic hemiparesis secondary to stroke. Electromyogr Clin Neurophysiol 44: 423-429, 2004
40)Ushiba J, Masakado Y, Komune Y, Muraoka Y, Chino N, et al: Changes of reflex size in upper limbs using wrist splint in hemiplegic patients. Electromyogr Clin Neurophysiol 44: 175-182, 2004
41)Fujiwara T, Kasashima Y, Honaga K, Muraoka Y, Tsuji T, et al: Motor improvement and corticospinal modulation induced by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy in patients with chronic stroke. Neurorehabil Neural Repair 23: 125-132, 2009
42)Page SJ, Fulk GD, Boyne P: Clinically important differences for the upper extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther 92: 791-798, 2012
43)Licklider JCR: Man-computer symbiosis. IRE Trans Hum Fac Elec HFE-1: 4-11, 1960
44)Hatsopoulos NG, Donoghue JP: The science of neural interface systems. Annu Rev Neurosci 32: 249-266, 2009