icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩72巻9号

2020年09月発行

特集 皮質性小脳萎縮症へのアプローチ

遺伝性疾患の立場からのアプローチ

著者: 髙橋祐二1

所属機関: 1国立精神・神経医療研究センター・病院脳神経内科

ページ範囲:P.947 - P.959

文献概要

皮質性小脳萎縮症(CCA)の一部には遺伝性脊髄小脳変性症(hSCD)が混在しており,正確な診断のためには遺伝子検査が必要である。頻度の高いhSCD(トリプレットリピート病およびSCA31)のスクリーニングを行う。次世代シーケンサーを用いたパネル解析・全エクソーム解析も行われている。運動失調症の患者レジストリJ-CATがCCAの遺伝疫学解明に貢献している。今後は全ゲノム解析を含めた網羅的遺伝子解析によりCCAの解明を進めていく。

参考文献

1)Tsuji S, Onodera O, Goto J, Nishizawa M: Sporadic ataxias in Japan--a population-based epidemiological study. Cerebellum 7: 189-197, 2008
2)Yoshida K, Kuwabara S, Nakamura K, Abe R, Matsushima A, et al: Idiopathic cerebellar ataxia (IDCA): diagnostic criteria and clinical analyses of 63 Japanese patients. J Neurol Sci 384: 30-35, 2018
3)日本神経学会(監), 「脊髄小脳変性症・多系統萎縮症診療ガイドライン」 作成委員会(編): 脊髄小脳変性症・多系統萎縮症診療ガイドライン2018. 南江堂, 東京, 2018
4)Klockgether T: Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol 9: 94-104, 2010
5)van de Warrenburg BPC, van Gaalen J, Boesch S, Burgunder JM, Dürr A, et al: EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur J Neurol 21: 552-562 2014
6)Sugihara K, Maruyama H, Morino H, Miyamoto R, Ueno H, et al: The clinical characteristics of spinocerebellar ataxia 36: a study of 2121 Japanese ataxia patients. Mov Disord 27: 1158-1163, 2012
7)Kim JS, Kwon S, Ki CS, Youn J, Cho JW: The etiologies of chronic progressive cerebellar ataxia in a Korean population. J Clin Neurol 14: 374-380, 2018
8)Fogel BL, Lee H, Deignan JL, Strom SP, Kantarci S, et al: Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol 71: 1237-1246, 2014
9)Pyle A, Smertenko T, Bargiela D, Griffin H, Duff J, et al: Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain 138: 276-283, 2015
10)Hadjivassiliou M, Martindale J, Shanmugarajah P, Grünewald RA, Sarrigiannis PG, et al: Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry 88: 301-309, 2017
11)Giordano I, Harmuth F, Jacobi H, Paap B, Vielhaber S, et al: Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia. Neurology 89: 1043-1049, 2017
12)Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, et al: Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol 75: 591-599, 2018
13)Sun M, Johnson AK, Nelakuditi V, Guidugli L, Fischer D, et al: Targeted exome analysis identifies the genetic basis of disease in over 50% of patients with a wide range of ataxia-related phenotypes. Genet Med 21: 195-206, 2019
14)Shimazaki H, Kobayashi J, Sugaya R, Nakano I, Fujimoto S: Late-onset autosomal recessive cerebellar ataxia and neuropathy with a novel splicing mutation in the ATM gene. J Integr Neurosci 19: 125-129, 2020
15)Kume K, Morino H, Miyamoto R, Matsuda Y, Ohsawa R, et al: Middle-age-onset cerebellar ataxia caused by a homozygous TWNK variant: a case report. BMC Med Genet 21: 68, 2020[doi: 10.1186/s12881-020-01002-4]
16)Matsuda Y, Morino H, Miyamoto R, Kurashige T, Kume K, et al: Biallelic mutation of HSD17B4 induces middle age-onset spinocerebellar ataxia. Neurol Genet 6: e396, 2020[doi: 10.1212/NXG.0000000000000396]
17)Maruyama H, Morino H, Miyamoto R, Murakami N, Hamano T, et al: Exome sequencing reveals a novel ANO10 mutation in a Japanese patient with autosomal recessive spinocerebellar ataxia. Clin Genet 85: 296-297, 2014
18)Doi H, Ushiyama M, Baba T, Tani K, Shiina M, et al: Late-onset spastic ataxia phenotype in a patient with a homozygous DDHD2 mutation. Sci Rep 4: 7132, 2014[doi: 10.1038/srep07132]
19)Yoshinaga T, Nakamura K, Ishikawa M, Yamaguchi T, Takano K, et al: A novel frameshift mutation of SYNE1 in a Japanese family with autosomal recessive cerebellar ataxia type 8. Hum Genome Var 4: 17052, 2017[doi: 10.1038/hgv.2017.52]
20)Doi H, Ohba C, Tsurusaki Y, Miyatake S, Miyake N, et al: Identification of a novel homozygous SPG7 mutation in a Japanese patient with spastic ataxia: making an efficient diagnosis using exome sequencing for autosomal recessive cerebellar ataxia and spastic paraplegia. Intern Med 52: 1629-1633, 2013
21)Takahashi Y, Kanai M, Taminato T, Watanabe S, Matsumoto C, et al: Compound heterozygous intermediate MJD alleles cause cerebellar ataxia with sensory neuropathy. Neurol Genet 3: e123, 2016[doi: 10.1212/NXG.0000000000000123]
22)榊原聡子, 饗場郁子, 齋藤由扶子, 犬飼 晃, 石川欽也, 他: Spinocerebellar ataxia type 31(SCA31)の臨床像, 画像所見—Spinocerebellar ataxia type 6(SCA6)との小脳外症候の比較検討. 臨床神経54: 473-479, 2014
23)Marti S, Baloh RW, Jen JC, Straumann D, Jung HH: Progressive cerebellar ataxia with variable episodic symptoms--phenotypic diversity of R1668W CACNA1A mutation. Eur Neurol 60: 16-20, 2008
24)Yue Q, Jen JC, Nelson SF, Baloh RW: Progressive ataxia due to a missense mutation in a calcium-channel gene. Am J Hum Genet 61: 1078-1087, 1997
25)Di Cristofori A, Fusi L, Gomitoni A, Grampa G, Bersano A: R583Q CACNA1A variant in SHM1 and ataxia: case report and literature update. J Headache Pain 13: 419-423, 2012
26)Gros-Louis F, Dupré N, Dion P, Fox MA, Laurent S, et al: Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39: 80-85, 2007
27)Attali R, Warwar N, Israel A, Gurt I, McNally E, et al: Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 18: 3462-3469, 2009
28)Synofzik M, Smets K, Mallaret M, Di Bella D, Gallenmüller C, et al: SYNE1 ataxia is a common recessive ataxia with major non-cerebellar features: a large multi-centre study. Brain 139: 1378-1393, 2016
29)Kume K, Morino H, Komure O, Matsuda Y, Ohsawa R, et al: C-terminal mutations in SYNE1 are associated with motor neuron disease in patients with SCAR8. J Neurol Sci 402: 118-120, 2019
30)Izumi Y, Miyamoto R, Morino H, Yoshizawa A, Nishinaka K, et al: Cerebellar ataxia with SYNE1 mutation accompanying motor neuron disease. Neurology 80: 600-601, 2013
31)Lagier-Tourenne C, Tazir M, López LC, Quinzii CM, Assoum M, et al: ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 82: 661-672, 2008
32)Horvath R, Czermin B, Gulati S, Demuth S, Houge G, et al: Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3. J Neurol Neurosurg Psychiatry 83: 174-178, 2012
33)Malgireddy K, Thompson R, Torres-Russotto D: A novel CABC1/ADCK3 mutation in adult-onset cerebellar ataxia. Parkinsonism Relat Disord 33: 151-152, 2016
34)Schirinzi T, Favetta M, Romano A, Sancesario A, Summa S, et al: One-year outcome of coenzyme Q10 supplementation in ADCK3 ataxia (ARCA2). Cerebellum Ataxias 6: 15, 2019[doi: 10.1186/s40673-019-0109-2]
35)Chang A, Ruiz-Lopez M, Slow E, Tarnopolsky M, Lang AE, et al: ADCK3-related coenzyme Q10 deficiency: a potentially treatable genetic disease. Mov Disord Clin Pract 5: 635-639, 2018
36)Vermeer S, Hoischen A, Meijer RPP, Gilissen C, Neveling K, et al: Targeted next-generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal-recessive cerebellar ataxia. Am J Hum Genet 87: 813-819, 2010
37)Renaud M, Anheim M, Kamsteeg EJ, Mallaret M, Mochel F, et al: Autosomal recessive cerebellar ataxia type 3 due to ANO10 mutations: delineation and genotype-phenotype correlation study. JAMA Neurol 71: 1305-1310, 2014
38)Bogdanova-Mihaylova P, Austin N, Alexander MD, Cassidy L, Early A, et al: Anoctamin 10-related autosomal recessive cerebellar ataxia: comprehensive clinical phenotyping of an Irish sibship. Mov Disord Clin Pract 4: 258-262, 2016
39)Nanetti L, Sarto E, Castaldo A, Magri S, Mongelli A, et al: ANO10 mutational screening in recessive ataxia: genetic findings and refinement of the clinical phenotype. J Neurol 266: 378-385, 2019
deficiency. J Neurol 261: 2192-2198, 2014
41)Yahikozawa H, Yoshida K, Sato S, Hanyu N, Doi H, et al: Predominant cerebellar phenotype in spastic paraplegia 7 (SPG7). Hum Genome Var 2: 15012, 2015[doi: 10.1038/hgv.2015.12]
42)Hewamadduma CA, Hoggard N, O'Malley R, Robinson MK, Beauchamp NJ, et al: Novel genotype-phenotype and MRI correlations in a large cohort of patients with SPG7 mutations. Neurol Genet 4: e279, 2018[doi: 10.1212/NXG.0000000000000279]
43)De la Casa-Fages B, Fernández-Eulate G, Gamez J, Barahona-Hernando R, Morís G, et al: Parkinsonism and spastic paraplegia type 7: Expanding the spectrum of mitochondrial Parkinsonism. Mov Disord 34: 1547-1561, 2019
44)Charif M, Chevrollier A, Gueguen N, Bris C, Goudenège D, et al: Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy. Neurol Genet 6: e428, 2020[doi: 10.1212/NXG.0000000000000428]
45)Pedroso JL, Vale TC, Bueno FL, Marussi VHR, Amaral L, et al: SPG7 with parkinsonism responsive to levodopa and dopaminergic deficit. Parkinsonism Relat Disord 47: 88-90, 2018
46)Pfeffer G, Pyle A, Griffin H, Miller J, Wilson V, et al: SPG7 mutations are a common cause of undiagnosed ataxia. Neurology 84: 1174-1176, 2015
47)Roxburgh RH, Marquis-Nicholson R, Ashton F, George AM, Lea RA, et al: The p.Ala510Val mutation in the SPG7 (paraplegin) gene is the most common mutation causing adult onset neurogenetic disease in patients of British ancestry. J Neurol 260: 1286-1294, 2013
48)Ishiura H, Takahashi Y, Hayashi T, Saito K, Furuya H, et al: Molecular epidemiology and clinical spectrum of hereditary spastic paraplegia in the Japanese population based on comprehensive mutational analyses. J Hum Genet 61: 363-364, 2016
49)Multiple-System Atrophy Research Collaboration: Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med 369: 233-244, 2013
50)Cortese A, Simone R, Sullivan R, Vandrovcova J, Tariq H, et al: Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet 51: 649-658, 2019
51)Syriani DA, Wong D, Andani S, De Gusmao CM, Mao Y, et al: Prevalence of RFC1-mediated spinocerebellar ataxia in a North American ataxia cohort. Neurol genet 6: e440, 2020[doi: 10.1212/NXG.0000000000000440]
52)Nakamura H, Doi H, Mitsuhashi S, Miyatake S, Katoh K, et al: Long-read sequencing identifies the pathogenic nucleotide repeat expansion in RFC1 in a Japanese case of CANVAS. J Hum Genet 65: 475-480, 2020
53)Tsuchiya M, Nan H, Koh K, Ichinose Y, Gao L, et al: RFC1 repeat expansion in Japanese patients with late-onset cerebellar ataxia. J Hum Genet 2020 Jul 21[doi: 10.1038/s10038-020-0807-x]

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら