1)Lashley T, Rohrer JD, Mead S, Revesz T: Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol 41: 858-881, 2015
2)桝田道人, 渡辺宏久, 勝野雅央, 祖父江元: 前頭側頭型認知症up to date. 最新医学71: 715-727, 2016
3)Riku Y, Watanabe H, Yoshida M, Tatsumi S, Mimuro M, et al: Lower motor neuron involvement in TAR DNA-binding protein of 43 kDa-related frontotemporal lobar degeneration and amyotrophic lateral sclerosis. JAMA Neurol 71: 172-179, 2014
4)Rösler TW, Marvian AT, Brendel M, Nykanen NP, Hollerhage M, et al: Four-repeat tauopathies. Prog Neurobiol 180: 101644, 2019[doi: 10.1016/j.pneurobio.2019.101644]
5)Guo T, Noble W, Hanger DP: Roles of tau protein in health and disease. Acta Neuropathol 133: 665-704, 2017
6)Seelaar H, Rohrer JD, Pijnenburg YA, Fox NC, van Swieten JC: Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 82: 476-486, 2011
7)Panza F, Lozupone M, Seripa D, Daniele A, Watling M, et al: Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat Rev Neurol 16: 213-228, 2020
8)Karch CM, Wen N, Fan CC, Yokoyama JS, Kouri N, et al: Selective genetic overlap between amyotrophic lateral sclerosis and diseases of the frontotemporal dementia spectrum. JAMA Neurol 75: 860-875, 2018
9)青木正志: FUS変異によるALS臨床病理と病態. 臨床神経53: 1080-1083, 2013
10)Ichiyanagi N, Fujimori K, Yano M, Ishihara-Fujisaki C, Sone T, et al: Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells. Stem Cell Reports 6: 496-510, 2016
11)Ikenaka K, Ishigaki S, Iguchi Y, Kawai K, Fujioka Y, et al: Characteristic features of FUS inclusions in spinal motor neurons of sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 79: 370-377, 2020
12)Masuda A, Takeda J, Okuno T, Okamoto T, Ohkawara B, et al: Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes Dev 29: 1045-1057, 2015
13)Yokoi S, Udagawa T, Fujioka Y, Honda D, Okado H, et al: 3'UTR length-dependent control of SynGAP isoform alpha2 mRNA by FUS and ELAV-like proteins promotes dendritic spine maturation and cognitive function. Cell Rep 20: 3071-3084, 2017
14)Udagawa T, Fujioka Y, Tanaka M, Honda D, Yokoi S, et al: FUS regulates AMPA receptor function and FTLD/ALS-associated behaviour via GluA1 mRNA stabilization. Nat Commun 6: 7098, 2015[doi: 10.1038/ncomms8098]
15)Sun S, Ling SC, Qiu J, Albuquerque CP, Zhou Y, et al: ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun 6: 6171, 2015[doi: 10.1038/ncomms7171]
16)An H, Skelt L, Notaro A, Highley JR, Fox AH, et al: ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles. Acta Neuropathol Commun 7: 7, 2019[doi: 10.1186/s40478-019-0658-x]
17)Tsuiji H, Iguchi Y, Furuya A, Kataoka A, Hatsuta H, et al: Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med 5: 221-234, 2013
18)Murray DT, Kato M, Lin Y, Thurber KR, Hung I, et al: Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171: 615-627, 2017
19)Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, et al: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162: 1066-1077, 2015
20)Ishigaki S, Sobue G: Importance of functional loss of FUS in FTLD/ALS. Front Mol Biosci 5: 44, 2018[doi: 10.3389/fmolb.2018.00044]
21)Ishigaki S, Fujioka Y, Okada Y, Riku Y, Udagawa T, et al: Altered tau isoform ratio caused by loss of FUS and SFPQ function leads to FTLD-like phenotypes. Cell Rep 18: 1118-1131, 2017
22)Fujioka Y, Ishigaki S, Masuda A, Iguchi Y, Udagawa T, et al: FUS-regulated region- and cell-type-specific transcriptome is associated with cell selectivity in ALS/FTLD. Sci Rep 3: 2388, 2013[doi: 10.1038/srep02388]
23)Ishigaki S, Masuda A, Fujioka Y, Iguchi Y, Katsuno M, et al: Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions. Sci Rep 2: 529, 2012[doi: 10.1038/srep00529]
24)Orozco D, Edbauer D: FUS-mediated alternative splicing in the nervous system: consequences for ALS and FTLD. J Mol Med (Berl) 91: 1343-1354, 2013
25)Thomas-Jinu S, Gordon PM, Fielding T, Taylor R, Smith BN, et al: Non-nuclear pool of splicing factor SFPQ regulates axonal transcripts required for normal motor development. Neuron 94: 322-336, 2017
26)Luisier R, Tyzack GE, Hall CE, Mitchell JS, Devine H, et al: Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun 9: 2010, 2018[doi: 10.1038/s41467-018-04373-8]
27)Tyzack GE, Luisier R, Taha DM, Neeves J, Modic M, et al: Widespread FUS mislocalization is a molecular hallmark of amyotrophic lateral sclerosis. Brain 142: 2572-2580, 2019
28)Patani R: The FUS about SFPQ in FTLD spectrum disorders. Brain 143: 2330-2332, 2020
29)Ishigaki S, Riku Y, Fujioka Y, Endo K, Iwade N, et al: Aberrant interaction between FUS and SFPQ in neurons in a wide range of FTLD spectrum diseases. Brain 143: 2398-2405, 2020
30)Honda D, Ishigaki S, Iguchi Y, Fujioka Y, Udagawa T, et al: The ALS/FTLD-related RNA-binding proteins TDP-43 and FUS have common downstream RNA targets in cortical neurons. FEBS Open Bio 4: 1-10, 2013