1)Selva-O'Callaghan A, Pinal-Fernandez I, Trallero-Araguás E, Milisenda JC, Grau-Junyent JM, et al: Classification and management of adult inflammatory myopathies. Lancet Neurol 17: 816-828, 2018
2)Liang WC, Uruha A, Suzuki S, Murakami N, Takeshita E, et al: Pediatric necrotizing myopathy associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase antibodies. Rheumatology (Oxford) 56: 287-293, 2017
3)Tanboon J, Nishino I: Classification of idiopathic inflammatory myopathies: pathology perspectives. Curr Opin Neurol 32: 704-714, 2019
4)Kabeya Y, Okubo M, Yonezawa S, Nakano H, Inoue M, et al: Deep convolutional neural network-based algorithm for muscle biopsy diagnosis. Lab Invest 102: 220-226, 2022
5)Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, et al: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318: 2199-2210, 2017
6)Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, et al: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 24: 1559-1567, 2018
7)Iizuka O, Kanavati F, Kato K, Rambeau M, Arihiro K, et al: Deep learning models for histopathological classification of gastric and colonic epithelial tumours. Sci Rep 10: 1504, 2020[doi: 10.1038/s41598-020-58467-9]
8)Wang S, Yang DM, Rong R, Zhan X, Xiao G: Pathology image analysis using segmentation deep learning algorithms. Am J Pathol 189: 1686-1698, 2019
9)Echle A, Rindtorff NT, Brinker TJ, Luedde T, Pearson AT, et al: Deep learning in cancer pathology: a new generation of clinical biomarkers. Br J Cancer 124: 686-696, 2021
10)Kabeya Y, Iwamori T, Yonezawa S, Takeuchi Y, Nakano H, et al: Physician-level aggregated classifier for genetic muscle disorders. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) 1850-1854, 2019
11)Deng J, Dong W, Socher R, Li LJ, Li K, et al: Image net: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition 248-255, 2009
12)Huang G, Liu Z, van Der Maaten L, Weinberger KQ: Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2261-2269, 2017
13)Liu L, Jiang H, He P, Chen W, Liu X, et al: On the variance of the adaptive learning rate and beyond. 2019[doi: 10.48550/arXiv.1908.03265]
14)Cho H, Hwang YH, Chung JK, Lee KB, Park JS, et al: Deep learning ensemble method for classifying glaucoma stages using fundus photographs and convolutional neural networks. Curr Eye Res 46: 1516-1524, 2021
15)Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, et al: Grad-cam: visual explanations from deep networks via gradient-based localization. 2017 IEEE International Conference on Computer Vision (ICCV) 618-626, 2017