文献詳細
総説
文献概要
カルシウムイメージングは現在,ニューロンの発火を計測するイメージング手法として広く用いられている。近年では,高感度かつ高速な遺伝子にコードされたカルシウムセンサーが数多く開発され,多光子励起顕微鏡や内視鏡型顕微鏡を使用することで生体脳においてもニューロンの電気的活動を1細胞レベルの解像度で複数同時に計測することが可能となった。本論では,蛍光カルシウムプローブの特徴や生体脳への応用について紹介する。
参考文献
1)Berridge MJ, Lipp P, Bootman MD: The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1: 11-21, 2000.[doi: 10.1038/35036035]
2)Wei Z, Lin BJ, Chen TW, Daie K, Svoboda K, et al: A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology. PLoS Comput Biol 16: e1008198, 2020.[doi: 10.1371/journal.pcbi.1008198]
3)Tsien RY, Pozzan T, Rink TJ: Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94: 325-334, 1982.[doi: 10.1083/jcb.94.2.325]
4)Grynkiewicz G, Poenie M, Tsien RY: A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440-3450, 1985.
-indicator dyes. Cell Calcium 27: 97-106, 2000.[doi: 10.1054/ceca.1999.0095]
6)Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, et al: Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388: 882-887, 1997.[doi: 10.1038/42264]
probe composed of a single green fluorescent protein. Nat Biotechnol 19: 137-141, 2001.[doi: 10.1038/84397]
8)Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC: Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433: 597-603, 2005.[doi: 10.1038/nature03274]
9)Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, et al: Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499: 295-300, 2013.[doi: 10.1038/nature12354]
10)Inoue M, Takeuchi A, Manita S, Horigane SI, Sakamoto M, et al: Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics. Cell 177: 1346-1360, 2019.[doi: 10.1016/j.cell.2019.04.007]
11)Sakamoto M, Inoue M, Takeuchi A, Kobari S, Yokoyama T, et al: A Flp-dependent G-CaMP9a transgenic mouse for neuronal imaging in vivo. Cell Reports Methods 2: 100168, 2022.[doi: 10.1016/j.crmeth.2022.100168]
12)Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, et al: Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16: 264-266, 2013.[doi: 10.1038/nn.3329]
13)Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, et al: Natural neural projection dynamics underlying social behavior. Cell 157: 1535-1551, 2014.[doi: 10.1016/j.cell.2014.05.017]
14)Marshel JH, Kim YS, Machado TA, Quirin S, Benson B, et al: Cortical layer-specific critical dynamics triggering perception. Science 365: eaaw5202, 2019.[doi: 10.1126/science.aaw5202]
15)Sridharan S, Gajowa MA, Ogando MB, Jagadisan UK, Abdeladim L, et al: High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks. Neuron 110: 1139-1155, 2022.[doi: 10.1016/j.neuron.2022.01.008]
16)Packer AM, Russell LE, Dalgleish HW, Hausser M: Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12: 140-146, 2015.[doi: 10.1038/nmeth.3217]
17)Dana H, Mohar B, Sun Y, Narayan S, Gordus A, et al: Sensitive red protein calcium indicators for imaging neural activity. Elife 5: e12727, 2016.[doi: 10.7554/elife.12727]
18)Inoue M, Takeuchi A, Horigane S, Ohkura M, Gengyo-Ando K, et al: Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods 12: 64-70, 2015.[doi: 10.1038/nmeth.3185]
19)Mohr MA, Bushey D, Aggarwal A, Marvin JS, Kim JJ, et al: jYCaMP: an optimized calcium indicator for two-photon imaging at fiber laser wavelengths. Nat Methods 17: 694-697, 2020.[doi: 10.1038/s41592-020-0835-7]
20)Qian Y, Piatkevich KD, Mc Larney B, Abdelfattah AS, Mehta S, et al: A genetically encoded near-infrared fluorescent calcium ion indicator. Nat Methods 16: 171-174, 2019.[doi: 10.1038/s41592-018-0294-6]
21)Hashizume R, Fujii H, Mehta S, Ota K, Qian Y, et al: A genetically encoded far-red fluorescent calcium ion biosensor derived from a biliverdin-binding protein. Protein Sci 31: e4440, 2022.[doi: 10.1002/pro.4440]
22)Stobart JL, Ferrari KD, Barrett MJP, Gluck C, Stobart MJ, et al: Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons. Neuron 98: 726-735, 2018.[doi: 10.1016/j.neuron.2018.03.050]
23)Wang L, Wu C, Peng W, Zhou Z, Zeng J, et al: A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging. Nat Commun 13: 5363, 2022.[doi: 10.1038/s41467-022-32994-7]
24)Liu Z, Lu X, Villette V, Gou Y, Colbert KL, et al: Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy. Cell 185: 3408-3425, 2022.[doi: 10.1016/j.cell.2022.07.013]
25)Bando Y, Sakamoto M, Kim S, Ayzenshtat I, Yuste R: Comparative evaluation of genetically encoded voltage indicators. Cell Rep 26: 802-813, 2019.[doi: 10.1016/j.celrep.2018.12.088]
26)Zhang XM, Yokoyama T, Sakamoto M: Imaging voltage with microbial rhodopsins. Front Mol Biosci 8: 738829, 2021.[doi: 10.3389/fmolb.2021.738829]
27)Cornejo VH, Ofer N, Yuste R: Voltage compartmentalization in dendritic spines in vivo. Science 375: 82-86, 2022.[doi: 10.1126/science.abg0501]
28)Kwon T, Sakamoto M, Peterka DS, Yuste R: Attenuation of synaptic potentials in dendritic spines. Cell Rep 20: 1100-1110, 2017.[doi: 10.1016/j.celrep.2017.07.012]
掲載誌情報