文献詳細
総説
文献概要
学習には2種類あるが,単純な反射を変える古典的条件づけの神経回路は,複雑な随意反応を変えるオペラント条件づけには適用できない。オペラント条件づけによる学習が進行する際,脳の広範な部位で,神経細胞の発火頻度や同期発火が多様に変化することがわかっている。また多くの部位の神経細胞の活動を,学習により自ら変化させることも可能である。複雑な随意反応を変える学習は,極めて広範な神経活動の動的変化かもしれない。
参考文献
1)岸本泰司: 瞬目反射条件づけ. Clinical Neurosci 37: 950-952, 2019
2)喜田 聡, 福島穂高, 稲葉洋芳: 恐怖条件づけ. 脳科学辞典(Web), 2014 https://bsd.neuroinf.jp/wiki/%E6%81%90%E6%80%96%E6%9D%A1%E4%BB%B6%E3%81%A5%E3%81%91(閲覧日: 2023年11月24日)
3)Lee KH, Mathews PJ, Reeves AM, Choe KY, Jami SA, et al: Circuit mechanisms underlying motor memory formation in the cerebellum. Neuron 86: 529-540, 2015
4)Johansen JP, Cain CK, Ostroff LE, LeDoux JE: Molecular mechanisms of fear learning and memory. Cell 147: 509-524, 2011
5)Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, et al: Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484: 381-385, 2012
6)Tonegawa S, Morrissey MD, Kitamura T: The role of engram cells in the systems consolidation of memory. Nat Rev Neurosci 19: 485-498, 2018
7)Walters ET, Carew TJ, Kandel ER: Associative learning in aplysia: evidence for conditioned fear in an invertebrate. Science 211: 504-506, 1981
8)櫻井芳雄, 高橋 晋: オペラント条件づけ. 脳科学辞典(Web), 2012 https://bsd.neuroinf.jp/w/index.php?title=%E3%82%AA%E3%83%9A%E3%83%A9%E3%83%B3%E3%83%88%E6%9D%A1%E4%BB%B6%E3%81%A5%E3%81%91&printable=yes(閲覧日: 2023年11月24日)
9)Ghafarimoghadam M, Mashayekh R, Gholami M, Fereydani P, Shelley-Tremblay J, et al: A review of behavioral methods for the evaluation of cognitive performance in animal models: current techniques and links to human cognition. Physiol Behav 244: 113652, 2022[doi: 10.1016/j.physbeh.2021.113652]
10)Yuki S, Sakurai Y, Yanagihara D: Rats adaptively seek information to accommodate a lack of information. Sci Rep 13: 14417, 2023[doi: 10.1038/s41598-023-41717-x]
11)Osako Y, Ohnuki T, Tanisumi Y, Shiotani K, Manabe H, et al: Contribution of non-sensory neurons in visual cortical areas to visually guided decisions in the rat. Curr Biol 31: 2757-2769, 2021
12)Davis H, Hurwitz HMB (eds): Operant-pavlovian interactions. Routledge, New York, 1977
13)Pereira TD, Shaevitz JW, Murthy M: Quantifying behavior to understand the brain. Nat Neurosci 23: 1537-1549, 2020
14)Krakauer JW, Ghazanfar AA, Gomez-Marin A, MacIver MA, Poeppel D: Neuroscience needs behavior: correcting a reductionist bias. Neuron 93: 480-490, 2017
15)Wirth S, Yanike M, Frank LM, Smith AC, Brown EN, et al: Single neurons in the monkey hippocampus and learning of new associations. Science 300: 1578-1581, 2003
16)Olds J, Disterhoft JF, Segal M, Kornblith CL, Hirsh R: Learning centers of rat brain mapped by measuring latencies of conditioned unit responses. J Neurophysiol 35: 202-219, 1972
17)Takamiya S, Shiotani K, Ohnuki T, Osako Y, Tanisumi Y, et al: Hippocampal CA1 neurons represent positive feedback during the learning process of an associative memory task. Front Syst Neurosci 15: 718619, 2021[doi: 10.3389/fnsys.2021.718619]
18)Takamiya S, Shiotani K, Ohnuki T, Osako Y, Tanisumi Y, et al: Auditory cortex neurons show task-related and learning-dependent selectivity toward sensory input and reward during the learning process of an associative memory task. eNeuro 9: ENEURO.0046-22.2022, 2022[doi: 10.1523/ENEURO.0046-22.2022]
19)Abeles M: Neural codes for higher brain functions. Markowitsch HJ (ed): Information Processing by the Brain: Views and Hypotheses from a Physiological-Cognitive Perspective. Hans Huber Publishers, Toronto, 1988, pp 225-238
20)Nakazono T, Takahashi S, Sakurai Y: Enhanced theta and high-gamma coupling during late stage of rule switching task in rat hippocampus. Neuroscience 412: 216-232, 2019
21)Cheng S, Frank LM: New experiences enhance coordinated neural activity in the hippocampus. Neuron 57: 303-313, 2008
22)Nougaret S, Genovesio A: Learning the meaning of new stimuli increases the cross-correlated activity of prefrontal neurons. Sci Rep 8: 11680, 2018[doi: 10.1038/s41598-018-29862-0]
23)Hebb DO: The Organization of behavior: a neuropsychological theory. John Wiley & Sons, New York, 1949
24)Sakurai Y: How do cell assemblies encode information in the brain? Neurosci Biobehav Rev 23: 785-796, 1999
25)Sakurai Y, Osako Y, Tanisumi Y, Ishihara E, Hirokawa J, et al: Multiple approaches to the investigation of cell assembly in memory research-present and future. Front Syst Neurosci 12: 21, 2018[doi: 10.3389/fnsys.2018.00021]
26)Igarashi KM, Lu L, Colgin LL, Moser MB, Moser EI: Coordination of entorhinal-hippocampal ensemble activity during associative learning. Nature 510: 143-147, 2014
27)Fetz EE: Operant conditioning of cortical unit activity. Science 163: 955-958, 1969
28)Fetz EE, Baker MA: Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles. J Neurophysiol 36: 179-204, 1973
29)Engelhard B, Ozeri N, Israel Z, Bergman H, Vaadia E: Inducing γ oscillations and precise spike synchrony by operant conditioning via brain-machine interface. Neuron 77: 361-375, 2013
30)Sakurai Y, Takahashi S: Conditioned enhancement of firing rates and synchrony of hippocampal neurons and firing rates of motor cortical neurons in rats. Eur J Neurosci 37: 623-639, 2013
31)Cerf M, Thiruvengadam N, Mormann F, Kraskov A, Quiroga RQ, et al: On-line, voluntary control of human temporal lobe neurons. Nature 467: 1104-1108, 2010
32)Patel K, Katz CN, Kalia SK, Popovic MR, Valiante TA: Volitional control of individual neurons in the human brain. Brain 144: 3651-3663, 2021
33)加賀谷 斉(編): ニューロモデュレーションを用いたリハビリテーション治療. CLINICAL REHABILITATION 臨時増刊号 第32巻7号. 医歯薬出版, 東京, 2023
34)Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, et al: Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 18: 86-100, 2017
35)Fetz EE: Volitional control of neural activity: implications for brain-computer interfaces. J Physiol 579: 571-579, 2007
36)Sakurai Y, Song K: Neural operant conditioning as a core mechanism of brain-machine interface control. Technologies 4: 26, 2016[doi: 10.3390/technologies4030026]
37)Sakurai Y, Song K, Tachibana S, Takahashi S: Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface. Front Syst Neurosci 8: 11, 2014[doi: 10.3389/fnsys.2014.00011]
38)Zacksenhouse M, Lebedev MA, Carmena JM, O'Doherty JE, Henriquez C, et al: Cortical modulations increase in early sessions with brain-machine interface. PLOS ONE 2: e619, 2007[doi: 10.1371/journal.pone.0000619]
39)Lashley KS: Brain mechanisms and intelligence: a quantitative study of injuries to the brain. University of Chicago Press, New York, 1929
40)John ER: Switchboard versus statistical theories of learning and memory. Science 177: 850-864, 1972
41)Machado TA, Kauvar IV, Deisseroth K: Multiregion neuronal activity: the forest and the trees. Nat Rev Neurosci 23: 683-704, 2022
42)Urai AE, Doiron B, Leifer AM, Churchland AK: Large-scale neural recordings call for new insights to link brain and behavior. Nat Neurosci 25: 11-19, 2022
掲載誌情報