1)鈴木マリ, 三五一憲: 糖尿病性神経障害. 末梢神経34: 37-44, 2023
2)Mizukami H, Osonoi S: Pathogenesis and molecular treatment strategies of diabetic neuropathy: collateral glucose-utilizing pathways in diabetic polyneuropathy. Int J Mol Sci 22: 94, 2020[doi: 10.3390/ijms22010094]
3)Niimi N, Yako H, Takaku S, Chung SK, Sango K: Aldose reductase and the polyol pathway in Schwann cells: old and new problems. Int J Mol Sci 22: 1031, 2021[doi: 10.3390/ijms22031031]
4)Ohno RI, Ichimaru K, Tanaka S, Sugawa H, Katsuta N, et al: Glucoselysine is derived from fructose and accumulates in the eye lens of diabetic rats. J Biol Chem 294: 17326-17338, 2019
5)Hotta N, Kawamori R, Atsumi Y, Baba M, Kishikawa H, et al: Stratified analyses for selecting appropriate target patients with diabetic peripheral neuropathy for long-term treatment with an aldose reductase inhibitor, epalrestat. Diabet Med 25: 818-825, 2008
6)Sano H, Nakamura A, Yamane M, Niwa H, Nishimura T, et al: The polyol pathway is an evolutionarily conserved system for sensing glucose uptake. PLoS Biol 20: e3001678, 2022[doi: 10.1371/journal.pbio.3001678]
7)Jang I, Kim HB, Seo H, Kim JY, Choi H, et al: O-GlcNAcylation of eIF2α regulates the phospho-eIF2α-mediated ER stress response. Biochim Biophys Acta 1853: 1860-1869, 2015
8)Ho EC, Lam KS, Chen YS, Yip JC, Arvindakshan M, et al: Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes 55: 1946-1953, 2006
9)Mizukami H, Osonoi S, Takaku S, Yamagishi SI, Ogasawara S, et al: Role of glucosamine in development of diabetic neuropathy independent of the aldose reductase pathway. Brain Commun 2: fcaa168, 2020[doi: 10.1093/braincomms/fcaa168]
10)Nakamura J, Kato K, Hamada Y, Nakayama M, Chaya S, et al: A protein kinase C-beta-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. Diabetes 48: 2090-2095, 1999
11)Vinik AI, Bril V, Kempler P, Litchy WJ, Tesfaye S, et al; MBBQ Study Group: Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase C beta-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebo-controlled, double-blind clinical trial. Clin Ther 27: 1164-1180, 2005
12)Yako H, Niimi N, Kato A, Takaku S, Tatsumi Y, et al: Role of pyruvate in maintaining cell viability and energy production under high-glucose conditions. Sci Rep 11: 18910, 2021[doi: 10.1038/s41598-021-98082-w]
13)Yako H, Niimi N, Takaku S, Sango K: Advantages of omics approaches for elucidating metabolic changes in diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 14: 1208441, 2023[doi: 10.3389/fendo.2023.1208441]
14)赤嶺友代, 西村理明, 三五一憲: 糖尿病性神経障害の成因: グリケーション. 月刊糖尿病124: 26-31, 2020
15)Hidmark A, Fleming T, Vittas S, Mendler M, Deshpande D, et al: A new paradigm to understand and treat diabetic neuropathy. Exp Clin Endocrinol Diabetes 122: 201-207, 2014
16)Nishizawa Y, Wada R, Baba M, Takeuchi M, Hanyu-Itabashi C, et al: Neuropathy induced by exogenously administered advanced glycation end-products in rats. J Diabetes Investig 1: 40-49, 2010
17)Duran-Jimenez B, Dobler D, Moffatt S, Rabbani N, Streuli CH, et al: Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes 58: 2893-2903, 2009
18)Shimizu F, Sano Y, Haruki H, Kanda T: Advanced glycation end-products induce basement membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating the release of TGF-β and vascular endothelial growth factor (VEGF) by pericytes. Diabetologia 54: 1517-1526, 2011
19)Osonoi S, Mizukami H, Takeuchi Y, Sugawa H, Ogasawara S, et al: RAGE activation in macrophages and development of experimental diabetic polyneuropathy. JCI Insight 7: e160555, 2022[doi: 10.1172/jci.insight.160555]
20)Hur J, Sullivan KA, Schuyler AD, Hong Y, Pande M, et al: Literature-based discovery of diabetes- and ROS-related targets. BMC Med Genomics 3: 49, 2010[doi: 10.1186/1755-8794-3-49]
21)Lin Q, Li K, Chen Y, Xie J, Wu C, et al: Oxidative stress in diabetic peripheral neuropathy: pathway and mechanism-based treatment. Mol Neurobiol 60: 4574-4594, 2023
22)Ziegler D, Low PA, Litchy WJ, Boulton AJ, Vinik AI, et al: Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial. Diabetes Care 34: 2054-2060, 2011
23)Didangelos T, Karlafti E, Kotzakioulafi E, Kontoninas Z, Margaritidis C, et al: Efficacy and safety of the combination of superoxide dismutase, alpha lipoic acid, vitamin B12, and carnitine for 12 months in patients with diabetic neuropathy. Nutrients 12: 3254, 2020[doi: 10.3390/nu12113254]
24)Detaille D, Vial G, Borel AL, Cottet-Rouselle C, Hallakou-Bozec S, et al: Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration. Cell Death Discov 2: 15072, 2016[doi: 10.1038/cddiscovery.2015.72]
25)Kato A, Tatsumi Y, Yako H, Sango K, Himeto T, et al: Recurrent short-term hypoglycemia and hyperglycemia induce apoptosis and oxidative stress via the ER stress response in immortalized adult mouse Schwann (IMS32) cells. Neurosci Res 147: 26-32, 2019[doi: 10.1016/j.neures.2018.11.004]
26)加藤宏一, 三五一憲: 糖尿病性神経障害の病態生理と治療薬の開発. 日病態生理会誌32: 23-25, 2023
27)Nagai Y, Matoba K, Takeda Y, Yako H, Akamine T, et al: Rho-associated, coiled-coil-containing protein kinase 1 regulates development of diabetic kidney disease via modulation of fatty acid metabolism. Kidney Int 102: 536-545, 2022
28)Kanazawa Y, Takahashi-Fujigasaki J, Ishizawa S, Takabayashi N, Ishibashi K, et al: The Rho-kinase inhibitor fasudil restores normal motor nerve conduction velocity in diabetic rats by assuring the proper localization of adhesion-related molecules in myelinating Schwann cells. Exp Neurol 247: 438-446, 2013
29)Tsukamoto M, Niimi N, Sango K, Takaku S, Kanazawa Y, et al: Neurotrophic and neuroprotective properties of exendin-4 in adult rat dorsal root ganglion neurons: involvement of insulin and PI3 kinase/RhoA signaling. Histochem Cell Biol 144: 249-259, 2015
30)Takaku S, Tsukamoto M, Niimi N, Yako H, Sango K: Exendin-4 promotes Schwann cell survival/migration and myelination in vitro. Int J Mol Sci 22: 2971, 2021[doi: 10.3390/ijms22062971]
31)Xiang Q, Liu Y, Chen L: Saikosaponin d (SSD) alleviates diabetic peripheral neuropathy by regulating the AQP1/RhoA/ROCK signaling in streptozotocin-induced diabetic rats. Acta Diabetol 60: 805-815, 2023
32)Holeček M: Role of impaired glycolysis in perturbations of amino acid metabolism in diabetes mellitus. Int J Mol Sci 24: 1724, 2023[doi: 10.3390/ijms24021724]
33)Handzlik MK, Gengatharan JM, Frizzi KE, McGregor GH, Martino C, et al: Insulin-regulated serine and lipid metabolism drive peripheral neuropathy. Nature 614: 118-124, 2023
34)Suzuki M, Kuromi H, Shindo M, Sakata N, Niimi N, et al: A Drosophila model of diabetic neuropathy reveals a crucial role of proteasome activity in the glia. iScience 26: 106997, 2023[doi: 10.1016/j.isci.2023.106997]
35)Cortese A, Zhu Y, Rebelo AP, Negri S, Courel S, et al: Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes. Nature Genet 52: 473-481, 2020
36)湯地美佳, 安藤匡宏, 吉村明子, 谷口雄大, 武井 潤, 他: Sorbitol Dehydrogenase(SORD)遺伝子変異を有する遺伝性ニューロパチーの5家系. 第63回日本神経学会学術大会抄録集 Pj-024-2, 2022
37)Zhu Y, Lobato AG, Rebelo AP, Canic T, Ortiz-Vega N, et al: Sorbitol reduction via govorestat ameliorates synaptic dysfunction and neurodegeneration in sorbitol dehydrogenase deficiency. JCI Insight 8: e164954, 2023[doi: 10.1172/jci.insight.164954]