icon fsr

文献詳細

雑誌文献

BRAIN and NERVE-神経研究の進歩76巻6号

2024年06月発行

特集 注意と注意障害

注意の神経機構

著者: 木田哲夫1

所属機関: 1愛知県医療療育総合センター発達障害研究所

ページ範囲:P.701 - P.707

文献概要

注意の神経機構について古くは感覚入力に対するニューロン応答や脳反応が注意により増大することが示され,情報処理モデルや計算モデルが提唱された。その後,注意障害研究と脳画像研究の発展により注意の神経機構は脳機能局在および大規模な脳ネットワークの観点からも理解されるようになった。本総説では,注意の神経機構について古典から最近の進歩まで概説する。

参考文献

1)Hernandez-Peon R, Scherrer H, Jouvet M: Modification of electric activity in cochlear nucleus during attention in unanesthetized cats. Science 123: 331-332, 1956
2)Haider M, Spong P, Lindsley DB: Attention, vigilance, and cortical evoked-potentials in humans. Science 145: 180-182, 1964
3)Davis H: Enhancement of evoked cortical potentials in humans related to a task requiring a decision. Science 145: 182-183, 1964
4)Spong P, Haider M, Lindsley DB: Selective attentiveness and cortical evoked responses to visual and auditory stimuli. Science 148: 395-397, 1965
5)Hillyard SA, Hink RF, Schwent VL, Picton TW: Electrical signs of selective attention in the human brain. Science 182: 177-180, 1973
6)Näätänen R: Attention and Brain Function. Erlbaum, Hillsdale, New Jersey, 1992
7)Hillyard SA, Vogel EK, Luck SJ: Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Lond B Biol Sci 353: 1257-1270, 1998
8)Näätänen R: SPR Award, 1999. For distinguished contributions to psychophysiology: Steven A. Hillyard. Psychophysiology 37: 269-274, 2000
9)Kida T, Nishihira Y, Wasaka T, Nakata H, Sakamoto M: Differential modulation of temporal and frontal components of the somatosensory N140 and the effect of interstimulus interval in a selective attention task. Brain Res Cogn Brain Res 19: 33-39, 2004
10)García-Larrea L, Lukaszewicz AC, Mauguière F: Somatosensory responses during selective spatial attention: the N120-to-N140 transition. Psychophysiology 32: 526-537, 1995
11)Näätänen R, Paavilainen P, Rinne T, Alho K: The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118: 2544-2590, 2007
12)Kida T, Nishihira Y, Hatta A, Wasaka T: Somatosensory N250 and P300 during discrimination tasks. Int J Psychophysiol 48: 275-283, 2003
13)Polich J: Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118: 2128-2148, 2007
14)Tanaka E, Inui K, Kida T, Miyazaki T, Takeshima Y, et al: A transition from unimodal to multimodal activations in four sensory modalities in humans: an electrophysiological study. BMC Neurosci 9: 116, 2008[doi: 10.1186/1471-2202-9-116]
15)Luck SJ, Hillyard SA: Spatial filtering during visual search: evidence from human electrophysiology. J Exp Psychol Hum Percept Perform 20: 1000-1014, 1994
16)Eimer M: The N2pc component as an indicator of attentional selectivity. Electroencephalogr Clin Neurophysiol 99: 225-234, 1996
17)Wickens C, Kramer A, Vanasse L, Donchin E: Performance of concurrent tasks: a psychophysiological analysis of the reciprocity of information-processing resources. Science 221: 1080-1082, 1983
18)Kida T, Nishihira Y, Hatta A, Wasaka T, Tazoe T, et al: Resource allocation and somatosensory P300 amplitude during dual task: effects of tracking speed and predictability of tracking direction. Clin Neurophysiol 115: 2616-2628, 2004
19)Kida T, Kaneda T, Nishihira Y: Modulation of somatosensory processing in dual tasks: an event-related brain potential study. Exp Brain Res 216: 575-584, 2012
20)Slotnick SD: Attentional modulation of early visual areas. Cogn Neurosci 9: 1-3, 2018
21)Qin N, Wiens S, Rauss K, Pourtois G: Effects of selective attention on the C1 ERP component: a systematic review and meta-analysis. Psychophysiology 59: e14123, 2022[doi: 10.1111/psyp.14123]
22)Bushnell MC, Goldberg ME, Robinson DL: Behavioral enhancement of visual responses in monkey cerebral cortex: I. Modulation in posterior parietal cortex related to selective visual attention. J Neurophysiol 46: 755-772, 1981
23)Moran J, Desimone R: Selective attention gates visual processing in the extrastriate cortex. Science 229: 782-784, 1985
24)Desimone R, Duncan J: Neural mechanisms of selective visual attention. Annu Rev Neurosci 18: 193-222, 1995
25)Luck SJ, Chelazzi L, Hillyard SA, Desimone R: Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77: 24-42, 1997
26)Kida T, Inui K, Wasaka T, Akatsuka K, Tanaka E, et al: Time-varying cortical activations related to visual-tactile cross-modal links in spatial selective attention. J Neurophysiol 97: 3585-3596, 2007
27)Li HH, Hanning NM, Carrasco M: To look or not to look: dissociating presaccadic and covert spatial attention. Trends Neurosci 44: 669-686, 2021
28)Reynolds JH, Heeger DJ: The normalization model of attention. Neuron 61: 168-185, 2009
29)Schmitz TW, Duncan J: Normalization and the cholinergic microcircuit: a unified basis for attention. Trends Cogn Sci 22: 422-437, 2018
30)Foster JJ, Ling S: Feature-based attention multiplicatively scales the fMRI-BOLD contrast-response function. J Neurosci 42: 6894-6906, 2022
31)Doostani N, Hossein-Zadeh GA, Vaziri-Pashkam M: The normalization model predicts responses in the human visual cortex during object-based attention. Elife 12: e75726, 2023[doi: 10.7554/eLife.75726]
32)Squire RF, Noudoost B, Schafer RJ, Moore T: Prefrontal contributions to visual selective attention. Annu Rev Neurosci 36: 451-466, 2013
33)Briggs F, Mangun GR, Usrey WM: Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 499: 476-480, 2013
34)Corbetta M, Shulman GL: Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3: 201-215, 2002
35)Corbetta M, Shulman GL: Spatial neglect and attention networks. Annu Rev Neurosci 34: 569-599, 2011
36)Mesulam MM: A cortical network for directed attention and unilateral neglect. Ann Neurol 10: 309-325, 1981
37)Wardak C, Ibos G, Duhamel JR, Olivier E: Contribution of the monkey frontal eye field to covert visual attention. J Neurosci 26: 4228-4235, 2006
38)Knight RT, Grabowecky MF, Scabini D: Role of human prefrontal cortex in attention control. Adv Neurol 66: 21-36, 1995
39)Buschman TJ, Miller EK: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315: 1860-1862, 2007
40)Gregoriou GG, Gotts SJ, Zhou H, Desimone R: High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324: 1207-1210, 2009
41)Bichot NP, Xu R, Ghadooshahy A, Williams ML, Desimone R: The role of prefrontal cortex in the control of feature attention in area V4. Nat Commun 10: 5727, 2019[doi: 10.1038/s41467-019-13761-7]
42)Baldauf D, Desimone R: Neural mechanisms of object-based attention. Science 344: 424-427, 2014
43)Morishima Y, Akaishi R, Yamada Y, Okuda J, Toma K, et al: Task-specific signal transmission from prefrontal cortex in visual selective attention. Nat Neurosci 12: 85-91, 2009
44)Eimer M, van Velzen J, Driver J: Cross-modal interactions between audition, touch, and vision in endogenous spatial attention: ERP evidence on preparatory states and sensory modulations. J Cogn Neurosci 14: 254-271, 2002
45)Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK: Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60: 709-719, 2008
46)Kida T, Kakigi R: Task-related changes in functional properties of the human brain network underlying attentional control. PLOS ONE 8: e79023, 2013[doi: 10.1371/journal.pone.0079023]
47)Kida T, Tanaka E, Kakigi R: Task-related changes in functional properties of the human brain network. Neuroscience Meeting 2013 Program No. 763. 18, 2013
48)Posner MI, Petersen SE: The attention system of the human brain. Annu Rev Neurosci 13: 25-42, 1990
49)Petersen SE, Posner MI: The attention system of the human brain: 20 years after. Annu Rev Neurosci 35: 73-89, 2012
50)Kida T, Inui K, Tanaka E, Kakigi R: Dynamics of within-, inter-, and cross-modal attentional modulation. J Neurophysiol 105: 674-686, 2011
51)Chambers CD, Stokes MG, Mattingley JB: Modality-specific control of strategic spatial attention in parietal cortex. Neuron 44: 925-930, 2004
52)Karnath HO: New insights into the functions of the superior temporal cortex. Nat Rev Neurosci 2: 568-576, 2001
53)Frey JN, Ruhnau P, Weisz N: Not so different after all: the same oscillatory processes support different types of attention. Brain Res 1626: 183-197, 2015
54)Lobier M, Palva JM, Palva S: High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention. Neuroimage 165: 222-237, 2018
55)Worden MS, Foxe JJ, Wang N, Simpson GV: Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20: RC63, 2000[doi: 10.1523/JNEUROSCI.20-06-j0002.2000]
56)Jensen O, Gips B, Bergmann TO, Bonnefond M: Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci 37: 357-369, 2014
57)Zhigalov A, Jensen O: Alpha oscillations do not implement gain control in early visual cortex but rather gating in parieto-occipital regions. Hum Brain Mapp 41: 5176-5186, 2020
58)Peylo C, Hilla Y, Sauseng P: Cause or consequence? Alpha oscillations in visuospatial attention. Trends Neurosci 44: 705-713, 2021
59)Gutteling TP, Sillekens L, Lavie N, Jensen O: Alpha oscillations reflect suppression of distractors with increased perceptual load. Prog Neurobiol 214: 102285, 2022[doi: 10.1016/j.pneurobio.2022.102285]
60)Bagherzadeh Y, Baldauf D, Pantazis D, Desimone R: Alpha synchrony and the neurofeedback control of spatial attention. Neuron 105: 577-587.e5, 2020[doi: 10.1016/j.neuron.2019.11.001]
61)Foster JJ, Thyer W, Wennberg JW, Awh E: Covert attention increases the gain of stimulus-evoked population codes. J Neurosci 41: 1802-1815, 2021
62)Morrow A, Elias M, Samaha J: Evaluating the evidence for the functional inhibition account of alpha-band oscillations during preparatory attention. J Cogn Neurosci 35: 1195-1211, 2023
63)Womelsdorf T, Everling S: Long-range attention networks: circuit motifs underlying endogenously controlled stimulus selection. Trends Neurosci 38: 682-700, 2015
64)Fries P: Rhythms for cognition: communication through coherence. Neuron 88: 220-235, 2015
65)Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, et al: Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation. Nat Neurosci 21: 903-919, 2018
66)Suess N, Hartmann T, Weisz N: Differential attention-dependent adjustment of frequency, power and phase in primary sensory and frontoparietal areas. Cortex 137: 179-193, 2021
67)Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud AL, et al: α-band phase synchrony is related to activity in the fronto-parietal adaptive control network. J Neurosci 32: 14305-14310, 2012
68)D'Andrea A, Chella F, Marshall TR, Pizzella V, Romani GL, et al: Alpha and alpha-beta phase synchronization mediate the recruitment of the visuospatial attention network through the superior longitudinal fasciculus. Neuroimage 188: 722-732, 2019
69)Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, et al: A default mode of brain function. Proc Natl Acad Sci U S A 98: 676-682, 2001
70)Raichle ME: The brain's default mode network. Annu Rev Neurosci 38: 433-447, 2015
71)Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, et al: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102: 9673-9678, 2005
72)Buckner RL, DiNicola LM: The brain's default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci 20: 593-608, 2019

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1344-8129

印刷版ISSN:1881-6096

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら