1)Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, et al: Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100: 13940-13945, 2003
2)Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K: Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8: 1263-1268, 2005
3)Ishizuka T, Kakuda M, Araki R, Yawo H: Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54: 85-94, 2006
4)Govorunova EG, Sineshchekov OA, Li H, Janz R, Spudich JL: Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J Biol Chem 288: 29911-29922, 2013
5)Tashiro R, Sushmita K, Hososhima S, Sharma S, Kateriya S, et al: Specific residues in the cytoplasmic domain modulate photocurrent kinetics of channelrhodopsin from Klebsormidium nitens. Commun Biol 4: 235, 2021[doi: 10.1038/s42003-021-01755-5]
6)Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, et al: High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 108: 7595-7600, 2011
7)Hagio H, Koyama W, Hosaka S, Song AD, Narantsatsral J, et al: Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases. Elife 12: e83975, 2023[doi: 10.7554/eLife.83975]
8)Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY: ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16: 1499-1508, 2013
9)Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, et al: Independent optical excitation of distinct neural populations. Nat Methods 11: 338-346, 2014
10)Vierock J, Grimm C, Nitzan N, Hegemann P: Molecular determinants of proton selectivity and gating in the red-light activated channelrhodopsin Chrimson. Sci Rep 7: 9928, 2017[doi: 10.1038/s41598-017-09600-8.]
11)Shevchenko V, Mager T, Kovalev K, Polovinkin V, Alekseev A, et al: Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach. Sci Adv 3: e1603187, 2017[doi: 10.1126/sciadv.1603187]
12)Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, et al: Ultrafast optogenetic control. Nat Neurosci 13: 387-392, 2010
13)Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K: Bi-stable neural state switches. Nat Neurosci 12: 229-234, 2009
14)Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, et al: Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114: 126-163, 2014
15)神取秀樹: ロドプシンの作動メカニズム. 生化学91: 472-481, 2019
16)Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, et al: Multimodal fast optical interrogation of neural circuitry. Nature 446: 633-639, 2007
17)Han X, Boyden ES: Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLOS ONE 2: e299, 2007[doi: 10.1371/journal.pone.0000299]
18)Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, et al: A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5: 18, 2011[doi: 10.3389/fnsys2011.00018]
19)Mahn M, Prigge M, Ron S, Levy R, Yizhar O: Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat Neurosci 19: 554-556, 2016
20)Govorunova EG, Sineshchekov OA, Janz R, Liu X, Spudich JL: Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349: 647-650, 2015
21)Wietek J, Broser M, Krause BS, Hegemann P: Identification of a natural green light absorbing chloride conducting channelrhodopsin from Proteomonas sulcata. J Biol Chem 291: 4121-4127, 2016
22)Govorunova EG, Sineshchekov OA, Li H, Wang Y, Brown LS, et al: RubyACRs, non-algal anion channelrhodopsins with highly red-shifted absorption. Proc Natl Acad Sci U S A 117: 22833-22850, 2020
23)Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, et al: A light-driven sodium ion pump in marine bacteria. Nat Commun 4: 1678, 2013
pump. Nature 521: 48-53, 2015
25)Hososhima S, Kandori H, Tsunoda SP: Ion transport activity and optogenetics capability of light-driven Na+-pump KR2. PLOS ONE 16: e0256728, 2021[doi: 10.1371/journal.pone.0256728]
26)Govorunova EG, Gou Y, Sineshchekov OA, Li H, Lu X, et al: Kalium channelrhodopsins are natural light-gated potassium channels that mediate optogenetic inhibition. Nat Neurosci 25: 967-974, 2022
27)Vierock J, Shiewer E, Grimm C, Rozenberg A, Chen IW, et al: WiChR, a highly potassium selective channelrhodopsin for low-light one- and two-photon inhibition of excitable cells. Sci Adv 8: eadd7729, 2022[doi: 10.1126/sciadv.add7729]
28)Kleinlogel S, Terpitz U, Legrum B, Gökbuget D, Boyden ES, et al: A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins. Nat Methods 8: 1083-1088, 2011
29)Schneider F, Gradmann D, Hegemann P: Ion selectivity and competition in channelrhodopsins. Biophys J 105: 91-100, 2013
30)Fernandez Lahore RG, Pampaloni NP, Schiewer E, Heim MM, Tillert L, et al: Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling. Nat Commun 13: 7844, 2022[doi: 10.1038/s41467-022-35373-4]
31)Hososhima S, Ueno S, Okado S, Inoue KI, Konno M, et al: A light-gated cation channel with high reactivity to weak light. Sci Rep 13: 7625, 2023[doi: 10.1038/s41598-023-34687-7]
32)Yamauchi Y, Konno M, Ito S, Tsunoda SP, Inoue K, et al: Molecular properties of a DTD channelrhodopsin from Guillardia theta. Biophys Physicobiol 14: 57-66, 2017
33)Shigemura S, Hososhima S, Kandori H, Tsunoda SP: Ion channel properties of a cation channelrhodopsin, Gt_CCR4. Appl Sci 9: 3440, 2019[doi: 10.3390/app9173440]
34)Marshel JH, Kim YS, Machado TA, Quirin S, Benson B, et al: Cortical layer-specific critical dynamics triggering perception. Science 365: eaaw5202, 2019[doi: 10.1126/science.aaw5202]
35)Kishi KE, Kim YS, Fukuda M, Inoue M, Kusakizako T, et al: Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 185: 672-689.e23, 2022[doi: 10.1016/j.cell.2022.01.007]
36)Hososhima S, Sakai S, Ishizuka T, Yawo H: Kinetic evaluation of photosensitivity in bi-stable variants of chimeric channelrhodopsins. PLOS ONE 10: e0119558, 2015[doi: 10.1371/journal.pone.0119558]
probe composed of a single green fluorescent protein. Nat Biotechnol 19: 137-141, 2001
38)Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, et al: Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499: 295-300, 2013
39)Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, et al: Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6: 2, 2013[doi: 10.3389/fnmol.2013.00002]
40)Tsutsui H, Karasawa S, Okamura Y, Miyawaki A: Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods 5: 683-685, 2008
41)Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L, et al: Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179: 1590-1608.e23, 2019
42)Zou P, Zhao Y, Douglass AD, Hochbaum DR, Brinks D, et al: Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat Commun 5: 4625, 2014
43)Scheib U, Stehfest K, Gee CE, Körschen HG, Fudim R, et al: The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Sci Signal 8: rs8, 2015[doi: 10.1126/scisignal.aab0611]
44)Yoshida K, Tsunoda SP, Brown LS, Kandori H: A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity. J Biol Chem 292: 7531-7541, 2017
45)Broser M, Spreen A, Konold PE, Schiewer E, Adam S, et al: NeoR, a near-infrared absorbing rhodopsin. Nat Commun 11: 5682, 2020
46)Sugiura, M. et al. Unusual photoisomerization pathway in a near-infrared light absorbing enzymerhodopsin. J Phys Chem Lett 13: 9539-9543, 2022
47)Rozenberg A, Kaczmarczyk I, Matzov D, Vierock J, Nagata T, et al: Rhodopsin-bestrophin fusion proteins from unicellular algae form gigantic pentameric ion channels. Nat Struct Mol Biol 29: 592-603, 2022
48)Pushkarev A, Inoue K, Larom S, Flores-Uribe J, Singh M, et al: A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558: 595-599, 2018
49)Shihoya W, Inoue K, Singh M, Konno M, Hososhima S, et al: Crystal structure of heliorhodopsin. Nature 574: 132-136, 2019
50)Hososhima S, Mizutori R, Abe-Yoshizumi R, Rozenberg A, Shigemura S, et al: Proton-transporting heliorhodopsins from marine giant viruses. Elife 11: e78416, 2022[doi: 10.7554/eLife.78416]
51)Cho SG, Song M, Chuon K, Shim JG, Meas S, et al: Heliorhodopsin binds and regulates glutamine synthetase activity. PLoS Biol 20: e3001817, 2022[doi: 10.1371/journal.pbio.3001817]
52)Shim JG, Cho SG, Kim SH, Chuon K, Meas S, et al: Heliorhodopsin helps photolyase to enhance the DNA repair capacity. Microbiol Spectr 10: e0221522, 2022[doi: 10.1128/spectrum.02215-22]
53)Mahn M, Saraf-Sinik I, Patil P, Pulin M, Bitton E, et al: Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin. Neuron 109: 1621-1635.e8, 2021
54)Koyanagi M, Takada E, Nagata T, Tsukamoto H, Terakita A: Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. Proc Natl Acad Sci U S A 110: 4998-5003, 2013
55)Kawano F, Okazaki R, Yazawa M, Sato M: A photoactivatable Cre-loxP recombination system for optogenetic genome engineering. Nat Chem Biol 12: 1059-1064, 2016