1)Esteva A, et al:Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639) : 115-118, 2017. PMID 28117445
2)De Fauw J, et al:Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 24(9) : 1342-1350, 2018. PMID 30104768
3)Davis SE, et al:Calibration drift in regression and machine learning models for acute kidney injury. J Am Med Inform Assoc 24(6) : 1052-1061, 2017. PMID 28379439
4)Mao Q, et al : Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open 8(1) : e017833, 2018.
5)Goodfellow IJ, et al:Explaining and harnessing adversarial examples. arXiv : 1412.6572, 2014.
6)Finlayson SG, et al:Adversarial attacks against medical deep learning systems. arXiv, 2018.
7)川村隆浩:機械学習の説明可能性への取り組み—DAPRA XAIプロジェクトを中心に.第33回人工知能学会全国大会,2019. https://www.jst.go.jp/crds/sympo/201906_JSAI/pdf/02.pdf(2022年2月3日現在)
8)Turakhia MP, et al:Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch ; the Apple Heart Study. Am Heart J 207 : 66-75, 2019. PMID 30392584
9)Ballinger B, et al : DeepHeart ; semi-supervised sequence learning for cardiovascular risk prediction. Proceedings of the AAAI Conference on Artificial Intelligence 2018 AAAI Conference 32(1) : Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
10)Alavi A, et al : Real-time alerting system for COVID-19 and other stress events using wearable data. Nat Med : 2021. Online ahead of print. PMID 34845389
11)Coravos A, et al : Developing and adopting safe and effective digital biomarkers to improve patient outcomes. NPJ Digit Med 2(1) : 14, 2019. PMID 30868107
12)Tomašev N, et al : A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 572(7767) : 116-119, 2019. PMID 31367026
13)Kleinbaum DG, Klein M : Survival Analysis ; A Self-Learning Text, 3rd edition. Springer, 2011.
14)Ishwaran H, et al : Random survival forests. Ann Appl Stat 2(3) : 841-860, 2008.
15)Ryu JY, et al : DeepHIT ; a deep learning framework for prediction of hERG-induced cardiotoxicity. Bioinformatics 36(10) : 3049-3055, 2020. PMID 32022860