icon fsr

文献詳細

雑誌文献

循環器ジャーナル71巻3号

2023年07月発行

文献概要

特集 心臓リハビリテーションのエビデンスを極める Ⅱ.新しい分野の心臓リハビリテーションを知る

AIを駆使した心臓リハビリテーション

著者: 貝原俊樹1

所属機関: 1川崎市立多摩病院循環器内科

ページ範囲:P.381 - P.384

文献購入ページに移動
POINT
・心リハ領域では,生体データ解析と患者フィードバックに対してAI利活用が期待される.
・AIを心リハへと活用する際,透明性や説明可能性などAI特有の解決すべき課題がある.
・引き続き,心リハ臨床現場におけるAIの実行可能性調査を重ねることが重要である.

参考文献

1)Krittanawong C, Zhang HJ, Wang Z, et al. Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol 2017 ; 69 : 2657-64.
2)Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 2019 ; 25 : 65-9.
3)Khurshid S, Friedman S, Reeder C, et al. ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation. Circulation 2022 ; 145 : 122-33.
4)Emakhu J, Monplaisir L, Aguwa C, et al. Acute coronary syndrome prediction in emergency care : A machine learning approach. Comput Methods Programs Biomed 2022 ; 225 : 107080.
5)Kaihara T, Scherrenberg M, Falter M, et al. Cardiac Telerehabilitation-A Solution for Cardiovascular Care in Japan. Circ Rep 2021 ; 3 : 733-6.
6)Shameer K, Johnson WK, Glicksberg SB, et al. Machine learning in cardiovascular medicine : are we there yet? Heart 2018 ; 104 : 1156-64.
7)Scherrenberg M, Bonneux C, Mahmood DY, et al. A Mobile Application to Perform the Six-Minute Walk Test(6MWT)at Home : A Random Walk in the Park Is as Accurate as a Standardized 6MWT. Sensors 2022 ; 22 : 4277.
8)De Cannière H, Corradi F, Smeets CJP, et al. Wearable monitoring and interpretable machine learning can objectively track progression in patients during cardiac rehabilitation. Sensors(Switzerland)2020 ; 20 : 1-15.
9)Kaihara T, Falter M, Scherrenberg M, et al. The impact of dietary education and counselling with a smartphone application on secondary prevention of coronary artery disease : A randomised controlled study(The TeleDiet Study). Digit Health 2023 ; 9 : 20552076231164101.
10)Lowres N, Duckworth A, Redfern J, et al. Use of a machine learning program to correctly triage incoming text messaging replies from a cardiovascular text-based secondary prevention program : Feasibility study. JMIR Mhealth Uhealth 2020 ; 8 : e19200.
11)Young L, Zhang Q, Lian E, et al. Factors predicting the utilization of center-based cardiac rehabilitation program. Geriatrics(Basel)2020 ; 5 : 66.
12)Kumar Y, Koul A, Singla R, et al. Artificial intelligence in disease diagnosis : a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput 2022 ; 1-28. doi : 10.1007/s12652-021-03612-z(Online ahead of print).
13)Stein N, Brooks K. A fully automated conversational artificial intelligence for weight loss : Longitudinal observational study among overweight and obese adults. JMIR Diabetes 2017 ; 2 : e28.
14)Maher CA, Davis CR, Curtis RG, et al. A physical activity and diet program delivered by artificially intelligent virtual health coach : Proof-of-concept study. JMIR Mhealth Uhealth 2020 ; 8 : e17558.
15)Perski O, Crane D, Beard E, et al. Does the addition of a supportive chatbot promote user engagement with a smoking cessation app? An experimental study. Digit Health 2019 ; 5 : 2055207619880676.
16)Olano-Espinosa E, Avila-Tomas JF, Minue-Lorenzo C, et al. Effectiveness of a Conversational Chatbot (Dejal@bot) for the Adult Population to Quit Smoking : Pragmatic, Multicenter, Controlled, Randomized Clinical Trial in Primary Care. JMIR Mhealth Uhealth 2022 ; 10 : e34273.
17)Reddy S. Explainability and artificial intelligence in medicine. Lancet Digit Health 2022 ; 4 : e214-5.
18)Asan O, Bayrak AE, Choudhury A. Artificial Intelligence and Human Trust in Healthcare : Focus on Clinicians. J Med Internet Res 2020 ; 22 : e15154.
19)Char SD, Abràmoff DM, Feudtner C. Identifying Ethical Considerations for Machine Learning Healthcare Applications. Am J Bioeth 2020 ; 20 : 7-17.
20)Tran VT, Riveros C, Ravaud P. Patients' views of wearable devices and AI in healthcare : findings from the ComPaRe e-cohort. NPJ Digit Med 2019 ; 2 : 53.

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:2432-3292

印刷版ISSN:2432-3284

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら