1)奥村 謙,目時典文,萩井譲士.心原性脳梗塞の疫学と重症度.心電図2011 ; 31 : 292-6.
2)Rivard L, Friberg L, Conen D, et al. Atrial Fibrillation and Dementia : A Report From the AF-SCREEN International Collaboration. Circulation 2022 ; 145 : 392-409.
3)Gladstone DJ, Spring M, Dorian P, et al. Atrial Fibrillation in Patients with Cryptogenic Stroke. N Engl J Med 2014 ; 370 : 2467-77.
4)Turakhia MP, Hoang DD, Zimetbaum P, et al. Diagnostic Utility of a Novel Leadless Arrhythmia Monitoring Device. Am J Cardiol 2013 ; 112 : 520-4.
5)Nakamura T, Sasano T. Artificial intelligence and cardiology : Current status and perspective. J Cardiol 2022 ; 79 : 326-33.
6)Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 2019 ; 25 : 65-9.
7)Siontis KC, Liu K, Bos JM, et al. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents. Int J Cardiol 2021 ; 340 : 42-7.
8)Elias P, Poterucha TJ, Rajaram V, et al. Deep Learning Electrocardiographic Analysis for Detection of Left-Sided Valvular Heart Disease. J Am Coll Cardiol 2022 ; 80 : 613-26.
9)Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med 2019 ; 25 : 70-4.
10)Adedinsewo D, Carter RE, Attia Z, et al. Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea. Circ Arrhythm Electrophysiol 2020 ; 13 : e008437.
11)Attia ZI, Friedman PA, Noseworthy PA, et al. Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs. Circ Arrhythm Electrophysiol 2019 ; 12 : e007284.
12)Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm : a retrospective analysis of outcome prediction. Lancet 2019 ; 394 : 861-7.
13)Nakamura T, Aiba T, Shimizu W, et al. Prediction of the Presence of Ventricular Fibrillation From a Brugada Electrocardiogram Using Artificial Intelligence. Circ J 2023 ; 87 : 1007-14.
14)Baek YS, Lee SC, Choi W, et al. A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm. Sci Rep 2021 ; 11 : 12818.
15)Wu H, Sawada T, Goto T, et al. Edge AI Model Deployed for Real-Time Detection of Atrial Fibrillation Risk during Sinus Rhythm. J Clin Med 2024 ; 13 : 2218.