icon fsr

文献詳細

雑誌文献

臨床検査49巻5号

2005年05月発行

文献概要

今月の主題 マイクロアレイ技術の進歩 話題

マイクロアレイとデータマイニング

著者: 笠井康弘12 守屋康充3 伊豫田明4 関直彦3 藤澤武彦4

所属機関: 1日立ソフトウェアエンジニアリング株式会社 2ライフサイエンス本部 3千葉大学大学院医学研究院機能ゲノム学(奇附)講座 4千葉大学大学院医学研究院胸部外科学

ページ範囲:P.562 - P.566

文献購入ページに移動
1. はじめに

 マイクロアレイを利用したデータマイニングの代表的な手法は,大きく2つに分類される(図1).1つは,解析に用いるサンプルが属するグループが未知である「教師無し学習」,グループが既知である「教師付き学習」である.いずれの場合も,その基本は『サンプルもしくは,遺伝子の有する各遺伝子の発現比率を,似ているもの同士で整理,分類することによって新しい知見を得る作業』である.

 本稿では,各遺伝子の発現比率の整理・分類の観点から,マイクロアレイのデータマイニングではどのようなデータマイニング作業が行われているか,主な2つの手法を紹介する.1つは,「教師無し学習」の代表として「クラスター解析」,もう1つは「教師付き学習」の代表として「判別分析」である.いずれも,遺伝子の発現パターンの整理,分類が不可欠な手法である.

参考文献

1) Eisen MB, Spellman PT, Brown PO, et al:Cluster analysis and display of genome-wide expression patterns. PNAS 95:14863-14868, 1998
2) Iyer VR, Eisen MB, Ross DT, et al:The transcriptional program in the response of human fibroblasts to serum. Science 283:83-87, 1999
3) Perou CM, Jeffrey SS, van de Rijn M:Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Genetics PNAS 96:9212-9217, 1999
4) Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, et al:Systematic determination of genetic network architecture. Nat Genet 22:281-285, 1999
5) Tamayo P, Slonim D, Mesirov J, et al:Interpreting patterns of gene expression with self-organizing maps;methods and application to hematopoietic differentiation. PNAS 96:2907-2912, 1999
6) Kohonen T:Self-Organizating Maps. Springer-Verlag, New York, 1997
7) Sokal RR, Michener CD:A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409-1438, 1958
8) Ward JH:Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association 58:236-244, 1963
9) Golub TR, Slonim DK, Tamayo P, et al:Molecular classification of cancer:Class discovery and class prediction by gene expression Monitoring. Science 15:531-537, 1999
10) Tusher VG, Tibshirani R, Chu G, et al:Significance analysis of microarrays applied to the ionizing radiation response. PNAS 9:5116-5121, 2001
11) Nutt CL, Mani DR, Betensky RA, et al:Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63:1602-1607, 2003
12) Khan J, Wei JS, Ringner M, et al:Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7:673-679, 2001
13) Vapnik V:The Nature of Statistical Learning Theory. Splinger-Verlag, New York, 1995
14) Brown MP, Grundy WN, Lin D, et al:Knowledge-based analysis of microarray gene expression data by using support vector machines. PNAS 97:262-267, 2000

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1882-1367

印刷版ISSN:0485-1420

雑誌購入ページに移動
icon up
あなたは医療従事者ですか?