1) Ross R:Atherosclerosis--an inflammatory disease. N Engl J Med 340:115-126, 1999
2) Leeuwenburgh C, Hardy MM, Hazen SL, et al:Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic. J Biol Chem 272:1433-1436, 1997
. Circ Res 85:950-958, 1999
4) Podrez EA, Abu-Soud HM, Hazen SL:Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med 28:1717-1725, 2000
5) Heinecke JW:Oxidative stress:new approaches to diagnosis and prognosis in atherosclerosis. Am J Cardiol 91:12A-16A, 2003
6) Eiserich JP, Hristova M, Cross CE, et al:Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393-397, 1998
. J Clin Invest 103:1547-1560, 1999
8) Podrez EA, Febbraio M, Sheibani N, et al:Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest 105:1095-1108, 2000
9) Shishehbor MH, Aviles RJ, Brennan ML, et al:Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA 289:1675-1680, 2003
10) Shishehbor MH, Brennan ML, Aviles RJ, et al:Statins promote potent systemic antioxidant effects through specific inflammatory pathways. Circulation 108:426-431, 2003
11) Hazen SL, Heinecke JW:3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 99:2075-2081, 1997
12) Hazell LJ, Arnold L, Flowers D, et al:Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest 97:1535-1544, 1996
13) Panzenboeck U, Raitmayer S, Reicher H, et al:Effects of reagent and enzymatically generated hypochlorite on physicochemical and metabolic properties of high density lipoproteins. J Biol Chem 272:29711-29720, 1997
14) Zheng L, Nukuna B, Brennan ML, et al:Apolipoprotein A-Ⅰ is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 114:529-541, 2004
15) Bergt C, Fu X, Huq NP, et al:Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-Ⅰ when hypochlorous acid oxidizes high density lipoprotein. J Biol Chem 279:7856-8766, 2004
16) Shao B, Bergt C, Fu X, et al:Tyrosine 192 in apolipoprotein A-Ⅰ is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J Biol Chem 280:5983-5993, 2005
17) Peng DQ, Wu Z, Brubaker G, et al:Tyrosine modification is not required for myeloperoxidase-induced loss of apolipoprotein A-Ⅰ functional activities. J Biol Chem 280:33775-33784, 2005
18) Peng DQ, Brubaker G, Wu Z, et al:Apolipoprotein A-Ⅰ tryptophan substitution leads to resistance to myeloperoxidase-mediated loss of function. Arterioscler Thromb Vasc Biol 28:2063-2070, 2008
19) Undurti A, Huang Y, Lupica JA, et al:Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem 284:30825-30835, 2009
20) Shao B, Oda MN, Bergt C, et al:Myeloperoxidase impairs ABCA1-dependent cholesterol efflux through methionine oxidation and site-specific tyrosine chlorination of apolipoprotein A-Ⅰ. J Biol Chem 281:9001-9004, 2006
21) Shao B, Cavigiolio G, Brot N, et al:Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-Ⅰ. Proc Natl Acad Sci USA 105:12224-12229, 2008