1) Kerjaschki D, Farquhar MG:The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc Natl Acad Sci USA 79:5557-5561,1982
2) Saito A, Pietromonaco S, Loo AK, et al:Complete cloning and sequencing of rat gp330/"megalin," a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci USA 91:9725-9729,1994
)-binding receptor with potential intracellular signaling properties. Eur J Biochem 239:132-137,1996
4) Christensen EI, Birn H:Megalin and cubilin:multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256-266,2002
5) Hama H, Saito A, Takeda T, et al:Evidence indicating that renal tubular metabolism of leptin is mediated by megalin but not by the leptin receptors. Endocrinology 145:3935-3940,2004
6) Oyama Y, Takeda T, Hama H, et al:Evidence for megalin-mediated proximal tubular uptake of L-FABP, a carrier of potentially nephrotoxic molecules. Lab Invest 85:522-531,2005
7) Nykjaer A, Fyfe JC, Kozyraki R, et al:Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25 (OH) vitamin D(3). Proc Natl Acad Sci USA 98:13895-13900,2001
8) Moestrup SK, Birn H, Fischer PB, et al:Megalin-mediated endocytosis of transcobalamin-vitamin-B12 complexes suggests a role of the receptor in vitamin-B12 homeostasis. Proc Natl Acad Sci USA 93:8612-8617,1996
9) Christensen EI, Moskaug JO, Vorum H, et al:Evidence for an essential role of megalin in transepithelial transport of retinol. J Am Soc Nephrol 10:685-695,1999
10) Birn H, Zhai X, Holm J, et al:Megalin binds and mediates cellular internalization of folate binding protein. FEBS J 272:4423-4430,2005
11) Olson GE, Winfrey VP, Hill KE, et al:Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem 283:6854-6860,2008
12) Chiu-Ugalde J, Theilig F, Behrends T, et al:Mutation of megalin leads to urinary loss of selenoprotein P and selenium deficiency in serum, liver, kidneys and brain. Biochem J 431:103-111,2010
13) Kozyraki R, Fyfe J, Verroust PJ, et al:Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. Proc Natl Acad Sci USA 98:12491-12496,2001
14) Kaseda R, Iino N, Hosojima M, et al:Megalin-mediated endocytosis of cystatin C in proximal tubule cells. Biochem Biophys Res Commun 357:1130-1134,2007
15) Seetharam B, Christensen EI, Moestrup SK, et al:Identification of rat yolk sac target protein of teratogenic antibodies, gp280, as intrinsic factor-cobalamin receptor. J Clin Invest 99:2317-2322,1997
16) Aminoff M, Carter JE, Chadwick RB, et al:Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nat Genet 21:309-313,1999
17) Christensen EI, Verroust PJ, Nielsen R:Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch 458:1039-1048,2009
18) Yammani RR, Seetharam S, Seetharam B:Identification and characterization of two distinct ligand binding regions of cubilin. J Biol Chem 276:44777-44784,2001
19) Fyfe JC, Madsen M, Ho/jrup P, et al:The functional cobalamin (vitamin B12)-intrinsic factor receptor is a novel complex of cubilin and amnionless. Blood 103:1573-1579,2004
20) Coudroy G, Gburek J, Kozyraki R, et al:Contribution of cubilin and amnionless to processing and membrane targeting of cubilin-amnionless complex. J Am Soc Nephrol 16:2330-2337,2005
21) Kalantry S, Manning S, Haub O, et al:The amnionless gene, essential for mouse gastrulation, encodes a visceral-endoderm-specific protein with an extracellular cysteine-rich domain. Nat Genet 27:412-416,2001
22) Tanner SM, Aminoff M, Wright FA, et al:Amnionless, essential for mouse gastrulation, is mutated in recessive hereditary megaloblastic anemia. Nat Genet 33:426-429,2003
exchanger isoform NHE3 in the proximal tubule. J Biol Chem 274:17518-17524,1999
24) Biemesderfer D, DeGray B, Aronson PS:Active (9.6 s) and inactive (21 s) oligomers of NHE3 in microdomains of the renal brush border. J Biol Chem 276:10161-10167,2001
25) Gunther W, Luchow A, Cluzeaud F, et al:ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci USA 95:8075-8080,1998
26) Jentsch TJ:Chloride transport in the kidney:lessons from human disease and knockout mice. J Am Soc Nephrol 16:1549-1561,2005
27) Wrong OM, Norden AG, Feest TG:Dent's disease;a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473-493,1994
28) Christensen EI, Devuyst O, Dom G, et al:Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci USA 100:8472-8477,2003
29) Tanuma A, Sato H, Takeda T, et al:Functional characterization of a novel missense CLCN5 mutation causing alterations in proximal tubular endocytic machinery in Dent's disease. Nephron Physiol 107:87-97,2007
30) Gotthardt M, Trommsdorff M, Nevitt MF, et al:Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem 275:25616-25624,2000
31) Rader K, Orlando RA, Lou X, et al:Characterization of ANKRA, a novel ankyrin repeat protein that interacts with the cytoplasmic domain of megalin. J Am Soc Nephrol 11:2167-2178,2000
32) Oleinikov AV, Zhao J, Makker SP:Cytosolic adaptor protein Dab2 is an intracellular ligand of endocytic receptor gp600/megalin. Biochem J 347:613-621,2000
33) Lou X, McQuistan T, Orlando RA, et al:GAIP, GIPC and Galphai3 are concentrated in endocytic compartments of proximal tubule cells:putative role in regulating megalin's function. J Am Soc Nephrol 13:918-927,2002
34) Larsson M, Hjalm G, Sakwe AM, et al:Selective interaction of megalin with postsynaptic density-95 (PSD-95)-like membrane-associated guanylate kinase (MAGUK) proteins. Biochem J 373:381-391,2003
35) Petersen HH, Hilpert J, Militz D, et al:Functional interaction of megalin with the megalinbinding protein (MegBP), a novel tetratrico peptide repeat-containing adaptor molecule. J Cell Sci 116:453-461,2003
36) Nagai M, Meerloo T, Takeda T, et al:The adaptor protein ARH escorts megalin to and through endosomes. Mol Biol Cell 14:4984-4996,2003
37) Hasson T:Myosin VI:two distinct roles in endocytosis. J Cell Sci 116:3453-3461,2003
38) Hosaka K, Takeda T, Iino N, et al:Megalin and nonmuscle myosin heavy chain IIA interact with the adaptor protein Disabled-2 in proximal tubule cells. Kidney Int 75:1308-1315,2009
39) Kottgen A, Pattaro C, Boger CA, et al:New loci associated with kidney function and chronic kidney disease. Nat Genet 42:376-384,2010
40) Kelley MJ, Jawien W, Orfel TL, et al:Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly. Nat Genet 26:106-108,2000
41) Seri M, Cusano R, Gangarossa S, et al:Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium. Nat Genet 26:103-105,2000
42) Heath KE, Campos-Barros A, Toren A, et al:Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias:May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am J Hum Genet 69:1033-1045,2001
43) Seri M, Savino M, Bordo D, et al:Epstein syndrome:another renal disorder with mutations in the nonmuscle myosin heavy chain 9 gene. Hum Genet 110:182-186,2002
44) Kao WH, Klag MJ, Meoni LA, et al:MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet 40:1185-1192,2008
45) Kopp JB, Smith MW, Nelson GW, et al:MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 40:1175-1184,2008
46) Freedman BI, Hicks PJ, Bostrom MA, et al:Non-muscle myosin heavy chain 9 gene MYH9 associations in African Americans with clinically diagnosed type 2 diabetes mellitus-associated ESRD. Nephrol Dial Transplant 24:3366-3371,2009
47) Lehtonen S, Shah M, Niolsen R, et al:The endocytic adaptor protein ARH associates with motor and centrosomal proteins and is involved in centrosome assembly and cytokinesis. Mol Biol Cell 19:2949-2961,2008
48) Zou Z, Chung B, Nguyen T, et al:Linking receptor-mediated endocytosis and cell signaling:evidence for regulated intramembrane proteolysis of megalin in proximal tubule. J Biol Chem 279:34302-34310,2004
49) Li Y, Cong R, Biemesderfer D:The COOH terminus of megalin regulates gene expression in opossum kidney proximal tubule cells. Am J Physiol Cell Physiol 295:C529-537,2008
50) Russo LM, del Re E, Brown D, et al:Evidence for a role of transforming growth factor (TGF)-beta1 in the induction of postglomerular albuminuria in diabetic nephropathy:amelioration by soluble TGF-beta type II receptor. Diabetes 56:380-388,2007
51) Hosojima M, Sato H, Yamamoto K, et al:Regulation of megalin expression in cultured proximal tubule cells by angiotensin II type 1A receptor-and insulin-mediated signaling cross talk. Endocrinology 150:871-878,2009
52) Tojo A, Onozato ML, Ha H, et al:Reduced albumin reabsorption in the proximal tubule of early-stage diabetic rats. Histochem Cell Biol 116:269-276,2001
53) Pontuch P, Jensen T, Deckert T, et al:Urinary excretion of retinol-binding protein in type 1 (insulin-dependent) diabetic patients with microalbuminuria and clinical diabetic nephropathy. Acta Diabetol 28:206-210,1992
54) Hong CY, Hughes K, Chia KS, et al:Urinary alpha1-microglobulin as a marker of nephropathy in type 2 diabetic Asian subjects in Singapore. Diabetes Care 26:338-342,2003
55) Gerstein HC, Mann JF, Yi Q, et al:Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286:421-426,2001
56) Wachtell K, Ibsen H, Olsen MH, et al:Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy:the LIFE study. Ann Intern Med 139:901-906,2003
57) Viberti GC, Hill RD, Jarrett RJ, et al:Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet 1:1430-1432,1982
58) Mogensen CE:Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 310:356-360,1984
59) Gekle M:Renal tubule albumin transport. Annu Rev Physiol 67:573-594,2005
60) Maunsbach AB:Absorption of I 125-labeled homologous albumin by rat kidney proximal tubule cells. A study of microperfused single proximal tubules by electron microscopic autoradiography and histochemistry. J Ultrastruct Res 15:197-241,1966
61) Comper WD, Hilliard LM, Nikolic-Paterson DJ, et al:Disease-dependent mechanisms of albuminuria. Am J Physiol Renal Physiol 295:F1589-1600,2008
62) Motoyoshi Y, Matsusaka T, Saito A, et al:Megalin contributes to the early injury of proximal tubule cells during nonselective proteinuria. Kidney Int 74:1262-1269,2008
63) Dronavalli S, Duka I, Bakris GL:The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4:444-452,2008
64) Saito A, Nagai R, Tanuma A, et al:Role of megalin in endocytosis of advanced glycation end products:implications for a novel protein binding to both megalin and advanced glycation end products. J Am Soc Nephrol 14:1123-1131,2003
65) Saito A, Takeda T, Sato K, et al:Significance of proximal tubular metabolism of advanced glycation end products in kidney diseases. Ann N Y Acad Sci 1043:637-643,2005
66) Sebekova K, Schinel R, Ling H, et al:Advanced glycated albumin impairs protein degradation in the kidney proximal tubules cell line LLC-PK1. Cell Mol Biol (Noisy-le-grand) 44:1051-1060,1998
67) Verbeke P, Perichon M, Friguet B, et al:Inhibition of nitric oxide synthase activity by early and advanced glycation end products in cultured rabbit proximal tubular epithelial cells. Biochim Biophys Acta 1502:481-494,2000
68) Burns WC, Kantharidis P, Thomas MC:The role of tubular epithelial-mesenchymal transition in progressive kidney disease. Cells Tissues Organs 185:222-231,2007
69) Strutz FM:EMT and proteinuria as progression factors. Kidney Int 75:475-481,2009
70) Saito A, Kazama JJ, Iino N, et al:Bioengineered implantation of megalin-expressing cells:a potential intracorporeal therapeutic model for uremic toxin protein clearance in renal failure. J Am Soc Nephrol 14:2025-2032,2003