1)Zhang X, Johnson AD, Hendricks AE, et al:Genetic associations with expression for genes implicated in GWAS studies for atherosclerotic cardiovascular disease and blood phenotypes. Hum Mol Genet 23:782-795,2014
2)Bis JC, Kavousi M, Franceschini N, et al:Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. Nat Genet 43:940-947,2011
3)Mabuchi H, Koizumi J, Shimizu M, et al:Development of coronary heart disease in familial hypercholesterolemia. Circulation 79:225-232,1989
4)Poirier S, Mayer G:The biology of PCSK9 from the endoplasmic reticulum to lysosomes: new and emerging therapeutics to control low-density lipoprotein cholesterol. Drug Des Devel Ther 7:1135-1148,2013
5)Talmud PJ, Futema M, Humphries SE:The genetic architecture of the familial hyperlipidaemia syndromes: rare mutations and common variants in multiple genes. Curr Opin Lipidol 25:274-281,2014
6)Liu R, Leslie KL, Martin KA:Epigenetic regulation of smooth muscle cell plasticity. Biochim Biophys Acta, 2014
7)Hiltunen MO, Turunen MP, Häkkinen TP, et al:DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med 7:5-11,2002
8)Findeisen HM, Kahles FK, Bruemmer D:Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis. Curr Atheroscler Rep 15:319,2013
9)Lockman K, Taylor JM, Mack CP:The histone demethylase, Jmjd1a, interacts with the myocardin factors to regulate SMC differentiation marker gene expression. Circ Res 101:e115-e123,2007
10)Villeneuve LM, Reddy MA, Lanting LL, et al:Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci U S A 105:9047-9052,2008
11)Inagaki T, Tachibana M, Magoori K, et al:Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells 14:991-1001,2009
12)Okamura M, Inagaki T, Tanaka T, et al:Role of histone methylation and demethylation in adipogenesis and obesity. Organogenesis 6:24-32,2010
13)Tateishi K, Okada Y, Kallin EM, et al:Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458:757-761,2009
14)Rottiers V, Näär AM:MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239-250,2012
15)Lewis AP, Jopling CL:Regulation and biological function of the liver-specific miR-122. Biochem Soc Trans 38:1553-1557,2010
16)Gerin I, Clerbaux LA, Haumont O, et al:Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 285:33652-33661,2010
17)Horie T, Ono K, Horiguchi M, et al:MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 107:17321-17326,2010
18)Marquart TJ, Allen RM, Ory DS, et al:miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A 107:12228-12232,2010
19)Najafi-Shoushtari SH, Kristo F, Li Y, et al:MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328:1566-1569,2010
20)Rayner KJ, Suárez Y, Dávalos A, et al:MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328:1570-1573,2010